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Foreword

Present-day research either academic or applied is facing entirely a different kind of
problem with respect to data; in particular, the volume, velocity, variety, and
veracity of data available have changed dramatically. Alongside the validity,
variability, veracity, of data have brought in new dimensions to associated risk in
using such data. While the value of data-driven decision making is becoming the
norm these days, the volatility and vulnerability of data pose a newer cautious
approach to using data gathered from social networks and sources. However, the
age-old problem of visualizing data and value adding from data analysis remains
unchanged.

In spite of the availability of newer approaches to learning from data, like
machine learning, deep learning, and other such modern data analytical tools, a
student of engineering or management or social and natural sciences still needs a
good basic grasp of the statistical methods and concepts (1) to describe a system in
a quantitative way, (2) to improve system through experiments, (3) to maintain the
system unaffected by external sources of variation, and (4) to analyze and predict
the dynamics of the system in the future. Toward this goal, students need a resource
(1) that does not require too many prerequisites, (2) that is easy to access, (3) that
explains concepts with examples, (4) that explains the validity of the methods
without getting lost in rigor, and last but not least, (5) that enhances the learning
experience. Professors Dharmaraja Selvamuthu and Dipayan Das have translated
their years of teaching and writing experience in the fields of descriptive and
inferential statistical methods, the design of experiments, and statistical quality
control to come out with a valuable resource that has all the desired features
outlined above.

The efforts of the authors can be seen in the depth and breadth of the topics
covered with the intention to be useful in different courses that are taught in
engineering colleges and technology institutions.

On the other hand, the instructors will enjoy using this resource as it makes their
teaching experience enhanced by the learning outcomes that are bound to accrue
from the content, structure, and exposition of this book. The exercises in this book
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add value as assessment tools for instructors and also offer additional practice for
students. The levels of difficulty in exercises are designed with such end in mind.
The authors will be appreciated by both students and instructors for this valuable
addition.

Good textbooks are like caring companions for students. This book has achieved
that merit.

Auckland, New Zealand Prof. Tiru Arthanari
University of Auckland
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Preface

Statistics has great relevance to several disciplines like economics, commerce,
engineering, medicine, health care, agriculture, biochemistry, and textiles. A large
number of students with varied disciplinary backgrounds need a course in basics of
statistics, the design of experiments, and statistical quality control at an introductory
level to pursue their discipline of interest. The idea of writing this book emerged
several years ago since there is no textbook available which covers all the three
areas in one book. In view of the diverse audience, this book addresses these three
areas. No previous knowledge of probability or statistics is assumed, but an
understanding of calculus is a prerequisite. The main objective of this book is to
give an accessible presentation of concepts from probability theory, statistical
methods, the design of experiments, and statistical quality control. Practical
examples and end-of-chapter exercises are the highlights of the text as they are
purposely selected from different fields.

Organized into ten chapters, the book comprises major topics on statistical
methods, the design of experiments, and statistical quality control. Chapter 1 is the
introductory chapter which describes the importance of statistical methods, design
of experiments, and statistical quality control. Chapters 2–6 alone could be used as
a text for a one-semester, beginner’s level course in statistical methods. Similarly,
Chaps. 7–10 alone could be used as a text for a one-semester course in design of
experiments. Chapters 2–6 and 10 could be used as a text for a one-semester
introductory course in statistical and quality control. The whole book serves as a
master-level introductory course in all the three topics, as required in textile
engineering or industrial engineering. At the Indian Institute of Technology
(IIT) Delhi, the course Introduction to Statistics and Design of Experiments for
which this text was developed has been taught for over a decade, chiefly to students
majoring in engineering disciplines or mathematics. Chapter 2 introduces the basic
concepts of probability theory, conditional probability, the notion of independence,
and common techniques for calculating probabilities. To introduce probability
concepts and to demonstrate probability calculations, simple probabilistic experi-
ments such as selecting a card from a deck or rolling a die are considered. In
addition, the standard distributions, moments, and central limit theorem with

vii



examples are also discussed in Chap. 2. Chapter 3 presents the descriptive statistics,
which starts with concepts such as data, information, and description. Various
descriptive measures, such as central tendency measures, variability measures, and
coefficient of variation, are presented in this chapter. Inference in mathematics is
based on logic and presumably infallible at least when correctly applied, while
statistical inference considers how inference should proceed when the data are
subject to random fluctuation. Sampling theory can be employed to obtain infor-
mation about samples drawn at random from a known population. However, often it
is more important to be able to infer information about a population from samples
drawn from it. Such problems are dealt with in statistical inference. The statistical
inference may be divided into four major areas: theory, estimation, tests of
hypothesis, and correlation and regression analysis. This book treats these four
areas separately, dealing with the theory of sampling distributions and estimation in
Chap. 4, hypothesis testing in Chap. 5, and correlation and regression analysis in
Chap. 6. The statistical inference is dealt with in detail with sampling distribution in
Chap. 4. The standard sampling distributions such as chi-square, Student’s t, and
F distributions are presented. The sample mean and sample variance are studied,
and their expectations and variances are given. The central limit theorem is applied
to determine the probability distribution they follow. Then, this chapter deals with
point estimation, a method of moments, maximum likelihood estimator, and
interval estimation. The classic methods are used to estimate unknown population
parameters such as mean, proportion, and variance by computing statistics from
random samples and applying the theory of sampling distributions.

Chapter 5 covers a statistical test of the hypothesis in detail with many examples.
The topics such as simple and composite hypotheses, types of error, power,
operating characteristic curves, p value, Neyman–Pearson method, generalized
likelihood ratio test, use of asymptotic results to construct tests, and generalized
ratio test statistic are covered. In this chapter, analysis of variance, in particular,
one-way ANOVA, is also introduced, whereas its applications are presented in the
later chapters. Chapter 6 discusses the analysis of correlation and regression. This
chapter starts by introducing Spearman’s correlation coefficient and rank correlation
and later on presents simple linear regression and multiple linear regression.
Further, in this chapter, nonparametric tests such as Wilcoxon, Smirnov, and
median tests are presented. The descriptive statistics, sampling distributions, esti-
mations, statistical inference, testing of hypothesis, and correlation and regression
analysis are presented in Chaps. 2–6 and are applied to the design and analysis of
experiments in Chaps. 7–9. Chapter 7 gives an introduction to the design of
experiments. Starting with the definition of the design of experiments, this chapter
gives a brief history of experimental design along with the need for it. It then
discusses the principles and provides us with the guidelines of the design of
experiments and ends with the illustration of typical applications of statistically
designed experiments in process-, product-, and management-related activities. This
chapter also deals with a very popular design of experiments, known as a com-
pletely randomized design, which describes how to conduct an experiment and
discusses the analysis of the data obtained from the experiment. The analysis of the
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experimental data includes the development of descriptive and regression models, a
statistical test of hypothesis based on the one-way classification of analysis of
variance, and multiple comparisons among treatment means. This chapter presents
many numerical examples to illustrate different methods of data analysis. At the
end, the reader is asked to solve many numerical problems to have a full under-
standing of a completely randomized design.

Chapter 8 discusses two important block designs, namely randomized block
design and Latin square design. It describes these designs by using practical
examples and discusses the analysis of the data obtained from experiments con-
ducted in accordance with these designs. The data analysis includes the develop-
ment of descriptive models, statistical tests of a hypothesis based on the two-way
and three-way classifications of analysis of variance, and multiple comparisons
among treatment mean. Also, in this chapter, many numerical examples are solved,
and several numerical problems are given at the end of the chapter as exercises.
Chapter 8 deals with an important class of experimental designs, known as factorial
designs. This chapter discusses the design and analysis of factorial experiments with
two or three factors, where each factor might have the same level or different levels.
It also discusses the design and analysis of 22 and 23 full factorial experiments. This
chapter explains two important design techniques, namely blocking and con-
founding, which are often followed by a factorial experiment. The design and
analysis of two-level fractional factorial design and the concept of design resolution
are explained. In this chapter, many numerical examples are given to illustrate the
concepts of different factorial designs and their methods of analysis. Additional
end-of-chapter exercises are provided to assess students’ understanding of factorial
experiments. Chapter 9 deals with response surface methodology, a collection of
mathematical and statistical tools and techniques used in developing, understand-
ing, and optimizing processes and products along with a description of response
surface models. It discusses the analysis of first-order and second-order response
surface models. It describes popular response surface designs that are suitable for
fitting the first-order and second-order models. Also, it describes the multi-factor
optimization technique based on the desirability function approach. This chapter
reports many numerical examples to illustrate different concepts of response surface
methodology. At the end, readers are asked to solve several numerical problems
based on the response surface methodology. Chapter 10 deals with statistical
quality control. This chapter discusses acceptance sampling techniques used for
inspection of incoming and outgoing materials in an industrial environment. It
describes single and double sampling plans for attributes and acceptance sampling
of variables. Further, this chapter also describes a very important tool in process
control, known as a control chart, which is used to monitor a manufacturing process
with quality assurance in mind. It provides an introduction to control chart. It
describes Shewhart’s three-sigma control charts for variables and attributes. It
discusses the process capability analysis. Also, it describes an advanced control
chart which is very efficient to detect a small shift in the mean of a process. Finally,
this chapter discusses many numerical examples to illustrate different concepts of
acceptance sampling techniques and quality control charts.
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The exposition of the entire book is processed with easy access to the subject
matter without sacrificing rigor, at the same time keeping prerequisites to a mini-
mum. A distinctive feature of this text is the “Remarks” following most of the
theorems and definitions. In Remarks, a particular result or concept being presented
is discussed from an intuitive point of view. A list of references is given at the end
of each chapter. Also, at the end of each chapter, there is a list of exercises to
facilitate the understanding of the main body of each chapter. Most of the examples
and exercises are classroom-tested in the course that we taught over many years.
Since the book is the outcome of years of teaching experience continuously
improved with students’ feedback, it is expected to yield a fruitful learning expe-
rience for the students, and the instructors will also enjoy facilitating such creative
learning. We hope that this book will serve as a valuable text for students.

We would like to express our gratitude to our organization—Indian Institute of
Technology Delhi—and numerous individuals who have contributed to this book.
Many former students of IIT Delhi, who took courses, namely MAL140 and
TTL773, provided excellent suggestions that we have tried to incorporate in this
book. We are immensely thankful to Prof. A. Rangan of IIT Madras for his
encouragement and criticism during the writing of this book. We are also indebted
to our doctoral research scholars, Dr. Arti Singh, Mr. Puneet Pasricha, Ms. Nitu
Sharma, Ms. Anubha Goel, and Mr. Ajay K. Maddineni, for their tremendous help
during the preparation of the manuscript in LaTeX and also for reading the
manuscript from a student point of view.

We gratefully acknowledge the book grant provided by the office of Quality
Improvement Programme of the IIT Delhi. Our thanks are also due to Mr. Shamim
Ahmad from Springer for his outstanding editorial work for this book. We are also
grateful to those anonymous referees who reviewed our book and provided us with
excellent suggestions. On a personal note, we wish to express our deep appreciation
to our families for their patience and support during this work.

In the end, we wish to tell our dear readers that we have tried hard to make this
book free of mathematical and typographical errors and misleading or ambiguous
statements. However, it might be possible that some are still being left in this book.
We will be grateful to receive such corrections and also suggestions for further
improvement of this book.

New Delhi, India Dharmaraja Selvamuthu
April 2018 Dipayan Das
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Chapter 1
Introduction

1.1 Statistics

Statistics is the science of data. The term statistics is derived from the New Latin
statisticum collegium (“council of state”) and the Italian word statista (“statesman”).
In a statistical investigation, it is known that for reasons of time or cost, one may not
be able to study each individual element (of population). Consider a manufacturing
unit that receives raw material from the vendors. It is then necessary to inspect the
rawmaterials before accepting it. It is practically impossible to check each and every
item of raw material. Thus, a few items (sample) are randomly selected from the lot
or batch and inspected individually before taking a decision to reject or accept the
lot. Consider another situation where one wants to find the retail book value (depen-
dent variable) of a used automobile using the age of the automobile (independent
variable). After conducting a study over the past sale of the used automobile, we
are left with the set of numbers. The challenge is to extract meaningful informa-
tion from the behavior observed (i.e., how age of the automobile is related to the
retail book value). Hence, statistics deals with the collection, classification, analysis,
and interpretation of data. Statistics provide us with an objective approach to do
this. There are several statistical techniques available for learning from data. One
needs to note that the scope of statistical methods is much wider than only statistical
inference problems. Such techniques are frequently applied in different branches of
science, engineering, medicine, and management. One of them is known as design
of experiments. When the goal of a study is to demonstrate cause and effect, experi-
ment is the only source of convincing data. For example, consider an investigation in
which researchers observed individuals and measure variable of interest but do not
attempt to influence response variable. But to study cause and effect, the researcher
deliberately imposes some treatment on individuals and then observes the response
variables. Thus, design of experiment refers to the process of planning and conducting
experiments and analyzing the experimental data by statistical methods so that valid
and objective conclusions can be obtained with minimum use of resources. Another
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2 1 Introduction

important application of statistical techniques lies in statistical quality control, often
abbreviated as SQC. It includes statistical process control and statistical product
control. Statistical process control involves certain statistical techniques for mea-
surement and analysis of process variation, while statistical product control involves
certain statistical techniques for taking a decision whether a lot or batch of incoming
and outgoing materials is acceptable or not.

This book comprises of statistical methods, design of experiment, and statistical
quality control. A brief introduction to these three parts is as follows.

1.2 Statistical Methods

The architect of modern statistical methods in the Indian subcontinent was undoubt-
edly Mahalanobis,1 but he was helped by a very distinguished scientist C R Rao.2

Statistical methods are mathematical formulas, models, and techniques that are used
in statistical inference of raw data. Statistical inference mainly takes the form of
problem of point or interval estimation of certain parameters of the population and
of testing various claims about the population parameters known as hypothesis testing
problem. The main approaches to statistical inference can be classified into paramet-
ric, nonparametric, and Bayesian. Probability is an indispensable tool for statistical
inference. Further, there is a close connection between probability and statistics. This
is because characteristics of the population under study are assumed to be known in
probability problem, whereas in statistics, the main concern is to learn these charac-
teristics based on the characteristics of sample drawn from the population.

1.2.1 Problem of Data Representation

Statistics and data analysis procedures generally yield their output in numeric or
tabular forms. In other words, after an experiment is performed, we are left with
the set of numbers (data). The challenge is to understand the features of the data
and extract useful information. Empirical or descriptive statistics helps us in this. It
encompasses both graphical visualization methods and numerical summaries of the
data.

1Prasanta Chandra Mahalanobis (June 29, 1893–June 28, 1972) was an Indian scientist and applied
statistician. He is best remembered for theMahalanobis distance, a statistical measure, and for being
one of the members of the first Planning Commission of free India.
2Calyampudi Radhakrishna Rao, known as C R Rao (born September 10, 1920) is an Indian-born,
naturalized American, mathematician, and statistician. He is currently Professor Emeritus at Penn
State University and Research Professor at the University at Buffalo. He has been honored by
numerous colloquia, honorary degrees, and festschrifts and was awarded the US National Medal of
Science in 2002.
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Graphical Representation

Over the years, it has been found that tables and graphs are particularly useful ways
for presenting data. Such graphical techniques include plots such as scatter plots,
histograms, probability plots, spaghetti plots, residual plots, box plots, block plots,
and bi-plots. In descriptive statistics, a box plot is a convenient way of graphically
depicting groups of numerical data through their quartiles. A box plot presents a
simple but effective visual description of the main features, including symmetry or
skewness, of a data set. On the other hand, pie charts and bar graphs are useful in
the scenario when one is interested to depict the categories into which a population
is categorized. Thus, they apply to categorical or qualitative data. In a pie chart, a
circle (pie) is used to represent a population and it is sliced up into different sectors
with each sector representing the proportion of a category. One of the most basic and
frequently used statistical methods is to plot a scatter diagram showing the pattern of
relationships between a set of samples, on which there are two measured variables
x and y (say). One may be interested in fitting a curve to this scatter, or in the
possible clustering of samples, or in outliers, or in colinearities, or other regularities.
Histograms give a different way to organize and display the data. A histogram does
not retain as much information on the original data as a stem-and-leaf diagram, in
the sense that the actual values of the data are not displayed. Further, histograms
are more flexible in selecting the classes and can also be applied to the bivariate
data. Therefore, this flexibility makes them suitable as estimators of the underlying
distribution of the population.

Descriptive Statistics

Descriptive statistics are broken down into measures of central tendency and mea-
sures of variability (spread), and these measures provide valuable insight into the
corresponding population features. Further, in descriptive statistics, the feature iden-
tification and parameter estimation are obtained with no or minimal assumptions on
the underlying population. Measures of central tendency include the mean, median,
and mode, while measures of variability include the standard deviation or variance,
the minimum and maximum variables, and the kurtosis and skewness. Measures of
central tendency describe the center position of a data set. On the other hand, mea-
sures of variability help in analyzing how spread-out the distribution is for a set of
data. For example, in a class of 100 students, the measure of central tendency may
give average marks of students to be 62, but it does not give information about how
marks are distributed because there can still be students with 1 and 100 marks. Mea-
sures of variability help us communicate this by describing the shape and spread of
the data set.

1.2.2 Problem of Fitting the Distribution to the Data

There is a need to learn how to fit a particular family of distribution models to
the data; i.e., identify the member of the parametric family that best fits the data.
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For instance, suppose one is interested to examine n people and record a value
1 for people who have been exposed to the tuberculosis (TB) virus and a value
0 for people who have not been so exposed. The data will consist of a random
vector X = (X1, X2, . . . , Xn) where Xi = 1 if the i th person has been exposed to
the TB virus and Xi = 0 otherwise. A possible model would be to assume that
X1, X2, . . . , Xn behave like n independent Bernoulli random variables each of which
has the same (unknown) probability p of taking the value 1. If the assumed parametric
model is a good approximation to the data generationmechanism, then the parametric
inference is not only valid but can be highly efficient. However, if the approximation
is not good, the results can be distorted. For instance, we wish to test a new device
for measuring blood pressure.Wewill try it out on n people and record the difference
between the value returned by the device and the true value as recorded by standard
techniques. The data will consist of a random vector X = (X1, X2, . . . , Xn) where
Xi is the difference for the i th person. A possible model would be to assume that
X1, X2, . . . , Xn behave like n independent random variables each having a normal
distribution with mean 0 and variance σ 2 density where σ 2 is some unknown positive
real number. It has been shown that even small deviations of the data generation
mechanism from the specifiedmodel can lead to large biases. Threemethods of fitting
models to data are: (a) the method of moments, which derives its name because it
identifies the model parameters that correspond (in some sense) to the nonparametric
estimation of selected moments, (b) the method of maximum likelihood, and (c) the
method of least squares which is most commonly used for fitting regression models.

1.2.3 Problem of Estimation of Parameters

In addition, there is a need to focus on one of the main approaches for extrapolating
sample information to the population, called the parametric approach. This approach
starts with the assumption that the distribution of the population of interest belongs to
a specific parametric family of distribution models. Many such models depend on a
small number of parameters. For example, Poissonmodels are identified by the single
parameter λ, and normal models are identified by two parameters, μ and σ 2. Under
this assumption (i.e., that there is a member of the assumed parametric family of
distributions that equals the population distribution of interest), the objective becomes
that of estimating the model parameters, to identify which member of the parametric
family of distributions best fits the data.

Point Estimation

Point estimation, in statistics, is the process of finding an approximate value of some
parameter of a population from random samples of the population. The method
mainly comprises of finding out an estimating formula of a parameter, which is
called the estimator of the parameter. The numerical value, which is obtained from
the formula on the basis of a sample, is called estimate.
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Example 1.1 Let X1, X2, . . . , Xn be a random sample from any distribution F with
mean μ. One may need to estimate the mean of the distribution. One of the natural
choices for the estimator of the mean is

1

n

n∑

i=1

Xi .

Other examples may need to estimate a population proportion, variance, percentiles,
and interquartile range (IQR).

Confidence Interval Estimation

In many cases, in contrast to point estimation, one may be interested in constructing
an interval that contains the true value (unknown) of the parameter value with a
specified high probability. The interval is known as the confidence interval, and the
technique of obtaining such intervals is known as interval estimation.

Example 1.2 A retailer buys garments of the same style from twomanufacturers and
suspects that the variation in the masses of the garments produced by the two makers
is different. A sample of size n1 and n2 was therefore chosen from a batch of garments
produced by the first manufacturer and the second manufacturer, respectively, and
weighed. We wish to find the confidence intervals for the ratio of variances of mass
of the garments from the one manufacturer with the other manufacturer.

Example 1.3 Consider another example of a manufacturer regularly tests received
consignments of yarn to check the average count or linear density (in the text).
Experience has shown that standard count tests on specimens chosen at random
from a delivery of a certain type of yarn usually have an average linear density of μ0

(say). A normal 35-tex yarn is to be tested. One is interested to know that how many
tests are required to be 95% sure that the value lies in an interval (a, b) where a and
b are known constants.

1.2.4 Problem of Testing of Hypothesis

Other than point estimation and interval estimation, onemay be interested in deciding
which value among a set of values is true for a given distribution. In practice, the
functional form of the distribution is unknown. One may be interested in some
properties of the population without making any assumption on the distribution. This
procedure of taking a decision on the value of the parameter (parametric) or nature of
distribution (nonparametric) is knownas the testing of hypothesis. The nonparametric
tests are also known as distribution-free tests. Some of the standard hypothesis tests
are z test, t test (parametric) and K S test, median test (nonparametric).
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Example 1.4 Often one wishes to investigate the effect of a factor (independent
variable x) on a response (dependent variable y). We then carry out an experiment
to compare a treatment when the levels of the factor are varied. This is a hypothesis
testing problem where we are interested in testing the equality of treatment means of
a single factor x on a response variable y (such problems are discussed in Chap.7).

Example 1.5 Consider the following problem. A survey showed that a random sam-
ple of 100 private passenger cars was driven on an average 9,500km a year with a
standard deviation of 1,650km. Use this information to test the hypothesis that pri-
vate passenger cars are driven on the average 9,000km a year against the alternatives
that the correct average is not 9,000km a year.

Example 1.6 Consider another example of some competitive examination perfor-
mance of students from one particular institute in this country who took this exam-
ination last year. From the sample of n student’s score and known average score,
we wish to test the claim of an administrator that these students scored significantly
higher than the national average.

Example 1.7 Consider one another example of the weekly number of accidents over
a 30-week period in Delhi roads. From the sample of n observations, we wish to test
the hypothesis that the number of accidents in a week has a Poisson distribution.

Example 1.8 Let x1, x2, . . . , xn and y1, y2, . . . , yn be two independent random sam-
ples from two unknown distribution functions F and G. One is interested to know
whether both samples come from same distribution or not. This is a problem of
nonparametric hypothesis testing.

Nonparametric tests have some distinct advantages. Nonparametric tests may be
the only possible alternative in the scenarios when the outcomes are ranked, ordinal,
measured imprecisely, or are subject to outliers, and parametric methods could not be
implemented without making strict assumptions about the distribution of population.
Another important hypothesis test is analysis of variance (ANOVA). It is based on
the comparison of the variability between factor levels to average variability within
a factor level, and it is used to assess differences in factor levels. The applications of
ANOVA are discussed in design of experiments.

1.2.5 Problem of Correlation and Regression

Correlation refers to a broad class of relationships in statistics that involve depen-
dence. In statistics, dependence refers to a relationship between two or more random
variables or data sets, for instance, the correlation between the age of a used auto-
mobile and the retail book value of an automobile, correlation between the price and
demand of a product. However, in practice, correlation often refers to linear relation-
ship between two variables or data sets. There are various coefficients of correlation
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that are used to measure the degree of correlation. Correlations are useful because
they can indicate a predictive relationship that can be exploited in practice. On the
other hand, regression analysis is a tool to identify the relationship that exists between
a dependent variable and one or more independent variables. In this technique, we
make a hypothesis about the relationship and then estimate the parameters of the
model and hence the regression equation. Correlation analysis can be used in two
basic ways: in the determination of the predictive ability of the variable and also in
determining the correlation between the two variables given.

The first part of the book discusses statistical methods whose applications in the
field of design of experiments and SQC are discussed in second part of the book. For
instance, in design of experiments, a well-designed experiment makes it easier to
understand different sources of variation. Analysis techniques such as ANOVA and
regression help to partition the variation for predicting the response or determining
if the differences seen between factor levels are more than expected when compared
to the variability seen within a factor level.

1.3 Design of Experiments

1.3.1 History

The concept of design of experiments was originated by Sir R. A. Fisher3 (Mont-
gomery 2007; Box et al. 2005). This happened when he was working at the Rotham-
sted Agricultural Experiment Station near London, England. The station had a huge
record of happenstance data of crop yield obtained from a large number of plots
of land treated every year with same particular fertilizer. It also had the records of
rainfall, temperature, and so on for the same period of time. Sir Fisher was asked if
he could extract additional information from these records using statistical methods.
The pioneering work of Sir Fisher during 1920–1930 led to introduce, for the first
time, the concept of design of experiment. This concept was further developed by
many statisticians. The catalytic effect of this concept was seen after the introduc-
tion of response surface methodology by Box and Wilson in 1951. The design of
experiments in conjunction with response surface methodology of analysis was used
to develop, improve, and optimize processes and products. Of late, the design of
experiments has started finding applications in cost reduction also. Today, a large
number of manufacturing and service industries do use it regularly.

3Sir Ronald Aylmer Fisher FRS (February 17, 1890–July 29, 1962), who published as R. A. Fisher,
was a British statistician and geneticist. For his work in statistics, he has been described as “a genius
who almost single-handedly created the foundations for modern statistical science” and “the single
most important figure in twentieth-century statistics.”



8 1 Introduction

1.3.2 Necessity

There are several ways an experiment can be performed. They include best-guess
approach (trial-and-error method), one-factor-at-a-time approach, and design of
experiment approach. Let us discuss them one by one with the help of a practical
example. Suppose a product development engineer wanted to minimize the electrical
resistivity of electro-conductive yarns prepared by in situ electrochemical polymer-
ization of an electrically conducting monomer. Based on the experience, he knew
that the polymerization process factors, namely polymerization time and polymeriza-
tion temperature, played an important role in determining the electrical resistivity of
the electro-conductive yarns. He conducted an experiment with 20 min polymeriza-
tion time and 10 ◦C polymerization temperature and prepared an electro-conductive
yarn. This yarn showed an electrical resistivity of 15.8k�/m. Further, he prepared
another electro-conductive yarn keeping the polymerization time at 60 min and poly-
merization temperature at 30 ◦C. Thus, prepared electro-conductive yarn exhibited
electrical resistivity of 5.2k�/m. He thought that this was the lowest resistivity pos-
sible to obtain, and hence, he decided not to carry out any experiment further. This
strategy of experimentation, often known as best-guess approach or trial-and-error
method, is frequently followed in practice. It sometimes works reasonably well if
the experimenter has an in-depth theoretical knowledge and practical experience of
the process. However, there are serious disadvantages associated with this approach.
Consider that the experimenter does not obtain the desired results. He will then
continue with another combination of process factors. This can be continued for a
long time, without any guarantee of success. Further, consider that the experimenter
obtains an acceptable result. He then stops the experiment, though there is no guar-
antee that he obtains the best solution. Another strategy of experiment that is often
used in practice relates to one-factor-at-a-time approach. In this approach, the level
of a factor is varied, keeping the level of the other factors constant. Then, the level
of another factor is altered, keeping the level of remaining factors constant. This is
continued till the levels of all factors are varied. The resulting data are then ana-
lyzed to show how the response variable is affected by varying each factor while
keeping other factors constant. Suppose the product development engineer followed
this strategy of experimentation and obtained the results as displayed in Fig. 1.1. It
can be seen that the electrical resistivity increased from 15.8 to 20.3k�/m when
the polymerization time increased from 20 to 60min, keeping the polymerization
temperature constant at 10 ◦C. Further, it can be seen that the electrical resistivity
decreased from 15.8 to 10.8k�/m when the polymerization temperature raised from
10 to 30 ◦C, keeping the polymerization time at 20min. The optimal combination of
process factors to obtain the lowest electrical resistivity (10.8k�/m) would be thus
chosen as 20min polymerization time and 30 ◦C polymerization temperature.

The major disadvantage of the one-factor-at-a-time approach lies in the fact that
it fails to consider any possible interaction present between the factors. Interaction
is said to happen when the difference in responses between the levels of one factor is
not same at all levels of the other factors. Figure1.2 displays an interaction between
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Fig. 1.1 Effects of polymerization process factors on electrical resistivity of yarns

Fig. 1.2 Effect of
interaction between
polymerization time and
temperature

polymerization temperature and polymerization time in determining the electrical
resistivity of electro-conductive yarns. It can be observed that the electrical resis-
tivity increased with the increase of polymerization time when the polymerization
temperature was kept at a lower level (10 ◦C). But the resistivity decreased with the
increase of polymerization time when the polymerization temperature was kept at a
higher level (30 ◦C). The lowest resistivity (5.2k�/m) was registered at a polymer-
ization time of 60min and polymerization temperature of 30 ◦C. Note that the lowest
resistivity obtained with the factorial experiment with four runs was much smaller
than that obtained with the one-factor-at-a-time experiment with three runs. In prac-
tice, interactions between factors happen frequently; hence, the one-factor-at-a-time
approach fails to produce the desirable results. The correct approach in dealing with
many factors is factorial design of experiment. In this approach, the factors are varied
together, instead of one at a time. Let us illustrate this concept with the help of earlier
example of electro-conductive yarn. Suppose a factorial design of experiment was
carried out with four runs as follows. In run 1, the polymerization time was kept
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at 20min and the polymerization temperature was maintained at 10 ◦C. In run 2,
the polymerization time was kept at 60min and the polymerization temperature was
maintained at 10 ◦C. In run 3, the polymerization time was kept at 20min and the
polymerization temperature was maintained at 30 ◦C. In run 4, the polymerization
time was kept at 60min and the polymerization temperature was kept at 30 ◦C. In
this way, four specimens of electro-conductive yarns were prepared. This is a two-
factor factorial design of experiment with both factors kept at two levels each. Let us
denote the factors by symbols A and B, where A represents polymerization time and
B refers to polymerization temperature. The levels are called as “low” and “high” and
denoted by “−” and “+”, respectively. The low level of factor A indicates 20min,
and the high level of factor A refers to 60min. Similarly, the low level of factor B
refers to 10 ◦C and the high level of factor B indicates 30 ◦C. The results of electrical
resistivity for the four runs are displayed in Table1.1. It is possible to calculate the
main effects of polymerization time and polymerization temperature on the electrical
resistivity of yarns. Also, it is possible to calculate the effect of interaction between
polymerization time and polymerization temperature on the electrical resistivity of
yarns. This is discussed below. The main effect of A is calculated from the difference
between the average of the observations when A is at high level and the average of
the observations when A is at low level. This is shown below.

A = 5.2 + 20.3

2
− 10.8 + 15.8

2
= −0.55.

Similarly, the main effect of B is calculated from the difference between the average
of the observations when B is at high level and the average of the observations when
B is at low level. This is shown below.

B = 5.2 + 10.8

2
− 20.3 + 15.8

2
= −10.05.

Similarly, the interaction effect of AB is calculated from the difference between the
average of the observations when the product AB is at high level and the average of
the observations when the product AB is at low level. This is shown below.

AB = 5.2 + 15.8

2
− 10.8 + 20.3

2
= −5.05.

Table 1.1 Electrical
resistivity of yarn

Run Factor A Factor B Product AB Resistivity
(k�/m)

1 − − + 15.8

2 + − − 20.3

3 − + − 10.8

4 + + + 5.2
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The aforesaid analysis reveals several interesting items of information. The minus
sign for the main effect of A indicates that the change of levels of A from higher to
lower resulted in increase of resistivity. Similarly, the minus sign for the main effect
of B indicates that the change of levels of B from higher to lower resulted in increase
of resistivity. Similarly, the minus sign for the interaction effect of AB indicates that
the change of levels of AB fromhigher to lower resulted in increase of resistivity. Fur-
ther, the main effect of B is found to be the largest, followed by the interaction effect
of AB and the main effect of A, respectively. One of the very interesting features
of the factorial design of experiment lies in the fact that it makes the most efficient
use of the experimental data. One can see that in the example of electro-conductive
yarn, all four observations were used to calculate the effects of polymerization time,
polymerization temperature, and their interaction. No other strategy of experimen-
tation makes so efficient use of the experimental data. This is an essential and useful
feature of factorial design of experiment. However, the number of runs required for
a factorial experiment increases rapidly as the number of factor increases. For exam-
ple, a complete replicate of a two-factor factorial design of experiment where each
factor is varied at six levels, the total number of runs is 64. In this design, 6 of the
63 degrees of freedom correspond to the main effect, 14 of the 63 degrees of free-
dom correspond to two-factor interactions, and the remaining 43 degrees of freedom
are associated with three-factor and higher-order interactions. If the experimenter
can reasonably assume that certain higher-order interactions are negligible, then the
information on the main effects and lower-order interaction effects may be obtained
by running a fraction of the factorial design of experiment. That is, a one-half fraction
of the two-factor factorial design of experiment where each factor is varied at six
levels requires 32 runs instead of 64 runs required for the original two-factor factorial
design experiment. The fractional factorial design of experiments is advantageous as
a factor screening experiment. Using this experiment, the significant main effects of
the factors are identified, and the insignificant factors are dropped out. It follows the
principle of main effects as proposed by Lucas (1991). According to him, it is the
empirical observation that the main effects are more important than the higher-order
effects (whether they are two-factor interaction effect or quadratic effect). Taking
the significant main effects into account, the observations of screening experiment
are analyzed, and an attempt is made to fit a first-order response surface model to
the data. The first-order response surface model is a mathematical representation of
the linear relationship between the independent variables (factors) and the dependent
variable (response). Suppose there are n number of factors x1, x2, . . . , xn , then the
first-order response surface model takes the following form

ŷ = β̂0 +
n∑

i=1

β̂i xi

where ŷ denotes predicted response, and β̂’s represent estimated coefficients.
As this model contains only the main effects, it is sometimes called main effects
model. Statistical tests are performed to examine if the first-order model is adequate.
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If it is then the first-order model is analyzed to find a direction along which the
desired response (higher or lower or target) is lying. If it is not found to be adequate,
then the experiment proceeds to a second stage which involves fitting of data to a
second-order response surface model as shown below

ŷ = β̂0 +
n∑

i=1

β̂i xi +
n∑

i=1

β̂i j xi +
∑

i< j

∑
β̂i j xi x j .

As shown, the second-order response surfacemodel takes into account of linear effect,
quadratic effect, and interaction effect of the factors. Generally, the second-order
models are determined in conjunction with response surface designs, namely central
composite design, Box Behnken design. Experiments are performed following the
response surface design, and the data are used to fit a higher-ordermodel. If themodel
is not found to be adequate, then the experimenter returns to screening experiment
with new factor-level combinations. But if the model is found to be adequate, then
the second-order model is analyzed to find out the optimum levels of the process
factors. This entire approach discussed above is known as sequential experimentation
strategy. This works very well with design of experiments and response surface
methodology of analysis.

1.3.3 Applications

The statistically designed experiments find applications in almost all kinds of indus-
tries. It is often said that wherever there are products and processes, the designed
experiments can be applied. Industries like agriculture, chemical, biochemical, phar-
maceutical, semiconductor, mechanical, textile, and automobile do use it regularly.
Needless to say, there are numerous research articles available that demonstrate
widespread applications of statistically designed experiments in many processes,
product, and management-related activities, including process characterization, pro-
cess optimization, product design, product development, and cost reduction. Some
examples illustrating the typical applications of statistically designed experiments
are given below.

Example 1.9 (Process characterization using statistically designed experiment)
The rotary ultrasonic machining process is used to remove materials from ceramics
for the development of advanced ceramic products with precise size and shape. In
this process, a higher material removal rate is always desired. It was of interest to
Hu et al. (2002) to investigate the effects of machining factors namely static force,
vibration amplitude, rotating speed, abrasive grit size, and abrasive grit number on
the rate of removal of materials. The authors wished to examine the main effect and
the interaction effect of the aforesaid machining factors on the material removal rate.
They conducted a factorial design of experiment involving the aforesaid five factors,
each varied at two levels. The static force was varied as 100 and 350N, the vibration
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amplitude was varied as 0.02 and 0.04mm, the rotating speed was varied at 1000
and 3000 rpm, the abrasive grit size was varied as 0.1 and 0.3mm, and the abrasive
grit number was varied as 300 and 900. The experimental data were analyzed to
estimate the main effects, two-factor interaction effects, and three-factor interaction
effects. Of themain effects, static force, vibration amplitude, and grit size were found
to be statistically significant. For two-factor interactions, the interactions between
static force and vibration amplitude, between static force and grit size, between
vibration amplitude and grit size were significant. For three-factor interactions, the
interactions among static force, vibration amplitude, and grit size were significant.
The best combination for material removal rate was found with higher static force,
larger vibration amplitude, and larger grit size. In addition to this, there are many
studies reported on process characterization using designed experiments (Kumar and
Das 2017; Das et al. 2012).

Example 1.10 (Process optimization using statistically designed experiment)
Corona discharge process is used to apply electrical charge onto fibrous filter media
for enhancement of particle capture. Thakur et al. (2014) attempted to optimize this
process to achieve higher initial surface potential and higher half-decay time simul-
taneously. A set of fibrous filter media was prepared by varying the corona charging
process factors namely applied voltage, charging time, and distance between elec-
trodes in accordance with a three-factor, three-level factorial design of experiment.
The experimental data of initial surface potential and half-decay time were analyzed
statistically. The initial surface potential was found to be higher at higher applied
voltage, longer duration of charging, and lower distance between electrodes. But
the half-decay time was found to be higher at lower applied voltage. Further, the
half-decay time increased initially with the increase in charging time and distance
between electrodes, but an increase in both the process factors beyond the optimum
regions resulted in a decrease in half-decay time. The simultaneous optimization of
initial surface potential and half-decay time was carried out using desirability func-
tion approach. It was found that the corona charging process set with 15kV applied
voltage, 29.4min charging time, and 26.35mm distance between electrodes was
found to be optimum, yielding initial surface potential of 10.56kV and half-decay
time of 4.22min. Also, there are many recent studies reported where the authors
attempted to optimize processes using designed experiments (Kumar and Das 2017;
Kumar et al. 2017; Thakur and Das 2016; Thakur et al. 2016, 2014; Das et al. 2012a;
Pal et al. 2012).

Example 1.11 (Product design using statistically designed experiment)
It is well known that the fuel efficiency of automobiles can be achieved better by
reduction of vehicle weight. With a view to this, an attempt was made by Park et al.
(2015) to design a lightweight aluminum-alloyed automotive suspension link using
statistically designed experiment and finite element analysis. Seven design factors
of the link were identified, and each factor was varied at two levels. The design
factors chosen were number of truss, height of truss, thickness of truss, thickness
of upper rib, thickness of lower rib, thickness of vertical beam, and width of link.
A 27 full factorial design of experiment was carried out, and the weight, stress, and
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stiffness of the links were determined. By optimization, the weight of the aluminum
suspension link was obtained as 58% of that of the initial steel suspension link, while
the maximum von Mises stress was reduced to 37% and stiffness was increased to
174%of those of the steel suspension link. In the literature,many reports are available
on product design using designed experiments (Pradhan et al. 2016; Das et al. 2014).

Example 1.12 (Product development using statistically designed experiment)
The statistically designed experiments are very popular for research and development
in pharmaceutical science. There aremany case studies reported on the formulation of
tablets using designed experiments by the US Food and Drug Administration (FDA).
Besides, a large number of articles are available on this topic in the literature. In one of
those articles, Birajdar et al. (2014) made an attempt to formulate fast disintegrating
tablets for oral antihypertensive drug therapy. A 23 factorial design was applied to
investigate the effects of concentration of Isabgol mucilage, concentration of sodium
starch glycolate (SSG), and concentration of microcrystalline cellulose (MCC) on
the disintegration time of losartan potassium tablets. The analysis of experimental
data revealed that the minimum disintegration time was found to be 46s with 16mg
Isabgol mucilage, 12mg SSG, and 40mg MCC. Besides this study, there are many
other studies reported on the development of products using designed experiments
(Kaur et al. 2013; Das et al. 2012b).

Example 1.13 (Cost reduction using statistically designed experiment)
Of late, the statistically designed experiments are started to be used for cost reduction.
Phadke and Phadke (2014) made an investigation whether the design of experiments
could reduce the IT system testing cost. They organized 20 real end-to-end case
studies using orthogonal arrays (OA) for generating test plans at 10 large financial
services institutions and compared the results with business-as-usual (BAU) process.
It was found that the OA-based testing resulted in an average reduction of total test
effort (labor hours) by 41%. Also, in 40% of the cases, the OA-based testing process
found more defects than the BAU process.

1.4 Statistical Quality Control

Statistical quality control (SQC) is one of the important applications of statisti-
cal techniques in manufacturing industries. Typically, the manufacturing industries
receive rawmaterial from the vendors. It is then necessary to inspect the rawmaterial
before taking a decision whether to accept them or not. In general, the rawmaterial is
available in lots or batches (population). It is practically impossible to check each and
every item of the raw material. So a few items (sample) are randomly selected from
the lot or batch and inspected individually before taking a decision whether the lot
or batch is acceptable or not. Here, two critical questions arise: (1) How many items
should be selected? and (2) how many defective items in a sample, if found, would
call for rejection of the lot or batch? These questions are answered through accep-
tance sampling technique. Using this technique, if the rawmaterial is not found to be
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acceptable, then it may be returned to the vendor. But if it is found to be acceptable,
then it may be processed through a manufacturing process and finally converted into
products. In order to achieve the targeted quality of the products, the manufacturing
process needs to be kept under control. This means that there should not be any
assignable variation present in the process. The assignable variation is also known
as non-random variation or preventable variation. Examples of assignable variation
include defective raw material, faulty equipment, improper handling of machines,
negligence of operators, unskilled technical staff. If the process variation is arising
due to random variation, the process is said to be under control. But if the process
variation is arising due to assignable variation, then the process is said to be out of
control. Whether the manufacturing process is under control or out of control can
be found through a technique, called control chart. It is therefore clear that control
chart helps to monitor a manufacturing process. Once the manufactured products
are prepared, they will be again inspected for taking a decision whether to accept or
reject the products. The statistical technique used for taking such decisions is known
as acceptance sampling technique.
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Chapter 2
Review of Probability

If mathematics is the queen of sciences, then probability is the queen of applied
mathematics. The concept of probability originated in the seventeenth century and
can be traced to games of chance and gambling. Games of chance include actions
like drawing a card, tossing a coin, selecting people at random and noting number
of females, number of calls on a telephone, frequency of accidents, and position of
a particle under diffusion. Today, probability theory is a well-established branch of
mathematics that finds applications from weather predictions to share market invest-
ments. Mathematical models for random phenomena are studied using probability
theory.

2.1 Basics of Probability

Probability theory makes predictions about experiments whose outcomes depend
upon chance.

Definition 2.1 (Random Experiment) An experiment is said to be a random experi-
ment if

1. All the possible outcomes of the experiment are known in advance. This implies
that before the experiment is executed, we are aware of all the possible outcomes.

2. At any execution of the experiment, the final outcome is not known in advance.
3. The experiment can be repeated under identical conditions any number of times.

Here, identical conditions mean that the situation or scenario will not change
when the experiment is repeated.
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Let Ω denotes the set of all possible outcomes of a random experiment. For
example,

1. In the random experiment of tossing a coin, Ω = {H, T }.
2. In the random experiment of observing the number of calls in a telephone

exchange, we have Ω = {0, 1, 2, . . .}.
3. In the random experiment of measuring the lifetime of a light bulb, Ω = [0,∞).

From the above examples, one can observe that the elements of Ω can be non-
numerical, integers, or real numbers. Also, the set Ω may be finite or countably
infinite or uncountable.

Definition 2.2 (Sample Points, Sample Space, and Events) An individual element
w ∈ Ω is called a sample point. Let S denote the collection of all possible subsets of
Ω including the null set. The pair (Ω, S) or Ω itself is called the sample space, and
any element of S is called an event. That means, if A ⊆ Ω , then A is an event. Note
that, the null set, denoted by ∅, is also a subset of Ω and hence is an event.

For example, in the random experiment of tossing two coins, we have

Ω = {(HH), (HT ), (T H), (T T )}

and

S = {∅, {(HH)}, {(HT )}, {(T H)}, {(T T )}, {(HH), (HT )}, . . . ,Ω}.

Here, (HH) is a sample point and {(HH), (T T )} is an event.
Using the set operations on events in S, we can get other events in S. For example,

1. A ∪ B, called union of A and B, represents the event “either A or B or both.”
2. A ∩ B, called intersection of A, B and represents the event “both A and B.”
3. Ac, called complement of A, represents the event “not A.”

Definition 2.3 (Equally LikelyOutcomes) The outcomes are said to be equally likely
if and only if none of them is expected to occur in preference to the other.

Definition 2.4 (Mutually Exclusive Events) Two events are said to be mutually
exclusive if the occurrence of one of them rules out the occurrence of the other;
i.e., two events A and B are mutually exclusive if the occurrence of A implies B
cannot occur and vice versa. We have A ∩ B = φ.

Definition 2.5 (Mutually Exhaustive Events) Two or more events are said to be
mutually exhaustive if there is a certain chance of occurrence of at least one of them
when they are all considered together. In that case, we have ∪Ai = Ω .
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2.1.1 Definition of Probability

Definition 2.6 (Classical Definition of Probability) Let a random experiment results
in n mutually exhaustive, mutually exclusive, and equally likely outcomes. If nA of
these outcomes have an attribute event A, then the probability of A is given by

P(A) = nA

n
. (2.1)

In other words, it is the ratio of the cardinality of the event to the cardinality of the
sample space. Note that, the classical definition of probability has a drawback thatΩ
must be finite. But in real-world problems, Ω may not be finite. Hence, to overcome
this, Kolmogorov1 introduced the axiomatic definition of probability which is stated
as follows

Definition 2.7 (AxiomaticDefinition of Probability) Let (Ω, S) be the sample space.
A real-valued function P(·) is defined on S satisfying the following axioms:

1. P(A) ≥ 0 ∀ A ∈ S. (Nonnegative property)
2. P(Ω) = 1. (Normed property)
3. If A1, A2, . . . is a countable sequence of mutually exclusive events in S, then

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai ). (Countable additivity)

When the above property is satisfied for finite sequences, it is called finite addi-
tivity.

Then, P is called the probability function.

The axiomatic definition of probability reduces to the classical definition of proba-
bility when Ω is finite, and each possible outcome is equally likely. From the above
definition, one can observe that P is a set function which assigns a real number to
subsets ofΩ . In particular, P is a normalized set function in the sense that P(Ω) = 1.
For each subset A of Ω , the number P(A) is called the probability that the outcome
of the random experiment is an element of the set A, or the probability of the event
A, or the probability measure of the set A. We call (Ω, S, P) a probability space.

An event A is said to be a sure event if P(A) = 1. Similarly, an event with
probability 0, i.e., P(A) = 0 is known as null or impossible event. An event whose
probability of occurrence is very small is known as a rare event.

Results:
When (Ω, S, P) is a probability space, the following results hold.

1. P(Ac) = 1 − P(A), ∀ A ∈ S.

1Andrey Nikolaevich Kolmogorov (1903–1987) was a twentieth-century Russian mathematician
who made significant contributions to the mathematics of probability theory. It was Kolmogorov
who axiomatized probability in his fundamental work, Foundations of the Theory of Probability
(Berlin), in 1933.
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2. P(∅) = 0.
3. If A ⊆ B, then P(A) ≤ P(B).

Example 2.1 From the past experience, a stockbroker believes that under the current
conditions of the economy, an investor will invest in risk-free bonds with probability
0.6, will invest in risky asset with a probability of 0.3, and will invest in both risk-free
bonds and risky asset with a probability of 0.15. Find the probability that an investor
will invest

1. in either risk-free bonds or risky asset.
2. in neither risk-free bonds nor risky asset.

Solution:
Let A denote the event that an investor will invest in risk-free bonds and B denote
the event that an investor will invest in risky asset. It is given that

P(A) = 0.6, P(B) = 0.3, P(A ∩ B) = 0.15.

1. Probability that the investor will invest in either risk-free bonds or risky asset is
given by

P(A ∪ B) = P(A) + P(B) − P(A ∩ B) = 0.6 + 0.3 − 0.15 = 0.75.

2. Probability the investor will invest neither in risk-free bonds nor in risky assets is
given by

P(Ac ∩ Bc) = 1 − P(A ∪ B) = 1 − 0.75 = 0.25.

2.1.2 Conditional Probability

Definition 2.8 (Conditional Probability) Let (Ω, S, P) be a probability space. Let
B ∈ S be any event with P(B) > 0. For any other event A ∈ S, the conditional
probability of A given B, denoted by P(A/B), is defined as

P(A/B) = P(A ∩ B)

P(B)
.

If P(B) = 0, then the conditional probability is not defined.

Conditional probability provides us a tool to discuss the outcome of an experiment on
the basis of partially available information. It can be easily proved that the conditional
probabilities P(A | B) for a fixed event B is itself a probability function. Hence, one
can treat conditional probabilities as probabilities on a reduced sample space, i.e.,
space obtained by discarding possible outcomes outside B.
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Example 2.2 Consider the experiment of tossing an unbiased coin twice. Find the
probability of getting a tail in the second toss given that a head has occurred on the
first toss.

Solution:
The sample space Ω is {{HH}, {HT }, {T H}, {T T }}. Let the event of getting a
head on the first toss and the event of getting a tail in the second toss be A and B,
respectively. Then,

P(A) = 0.5, P(B) = 0.5, P(A ∩ B) = 0.25.

Now, according to the definition,

P(B/A) = P(A ∩ B)

P(A)
= 0.25

0.5
= 0.5.

Notice how this is different from the probability of the event of getting a head before
a tail in the two tosses.

Example 2.3 An automobile is being filled with petrol. The probability that oil is
also need to be changed is 0.25, the probability that a new filter is needed is 0.40,
and the probability that both the filter and oil need to be changed is 0.14.

1. Given that oil need to be changed, find the probability that a new oil filter is
required?

2. Given that a new oil filter is required, find the probability that the oil need to be
changed?

Solution:
Let A be the event that an automobile being filled with petrol will also need an oil
change, and B be the event that it will need a new oil filter. Then,

P(A) = 0.25, P(B) = 0.40, P(A ∩ B) = 0.14.

1. Probability that a new oil filter is required given that oil had to be changed is
given by

P(B/A) = P(A ∩ B)

P(A)
= 0.14

0.25
= 0.56.

2. Probability that oil has to be changed given that a new filter is needed is given by

P(A/B) = P(A ∩ B)

P(B)
= 0.14

0.40
= 0.35.

Definition 2.9 (Independent Events) Two events A and B defined on a probability
space (Ω, S, P) are said to be independent if and only if P(A ∩ B) = P(A)P(B).
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Remark 2.1 1. If P(A) = 0, then A is independent of any event B ∈ S.
2. Any event is always independent of the events Ω and ∅.
3. If A and B are independent events and P(A ∩ B) = 0, then either P(A) = 0 or

P(B) = 0.
4. If P(A) > 0; P(B) > 0 and A, B are independent, then they are not mutually

exclusive events.

The reader should verify the above remarks using the definition of independence.

Definition 2.10 (Pairwise Independent Events) LetU be a collection of events from
S. We say that the events in U are pairwise independent if and only if for every pair
of distinct events A, B ∈ U , P(A ∩ B) = P(A)P(B).

Definition 2.11 (Mutually Independent Events) LetU be a collection of events from
S. The events inU are mutually independent if and only if for any finite subcollection
A1, A2, . . . , Ak of U , we have

P (A1 ∩ A2 ∩ · · · ∩ Ak) =
k∏

i=1

P(Ai ) ∀ k.

Example 2.4 Suppose that a student can solve 75%of the problems of amathematics
book while another student can solve 70% of the problems of the book. What is the
chance that a problem selected at random will be solved when both the students try?

Solution: Let A and B be the events that students can solve a problem, respectively.
Then, P(A) = 0.75, P(B) = 0.70. Since A and B are independent events, we have

P(A ∩ B) = P(A)P(B) = 0.75 × 0.70.

Hence, the chance that the problem selected at random will be solved when both the
students try is obtained as

P(A ∪ B) = P(A) + P(B) − P(A ∩ B) = 0.75 + 0.70 − (0.75 × 0.70) = 0.925.

Example 2.5 Consider a random experiment of selecting a ball from an urn contain-
ing four balls numbered 1, 2, 3, 4. Suppose that all the four outcomes are assumed
equally likely. Let A = {1, 2}, B = {1, 3}, and C = {1, 4} be the events. Prove that
these events are pairwise independent but not mutually independent.

Solution:
We have, A ∩ B = {1} = A ∩ C = B ∩ C = A ∩ B ∩ C. Then,

P(A) = 2

4
= 1

2
, P(B) = 2

4
= 1

2
, P(C) = 2

4
= 1

2
.

P(A ∩ B) = 1

4
, P(A ∩ C) = 1

4
, P(B ∩ C) = 1

4
and P(A ∩ B ∩ C) = 1

4
.
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As we know, if P(A ∩ B) = P(A)P(B) then A and B are pairwise independent
events.We can see A and B, B andC , A andC are pairwise independent events. To be
mutually independent events, we have to check P(A ∩ B ∩ C) = P(A)P(B)P(C).

Here,

P(A)P(B)P(C) = 1

8
�= P(A ∩ B ∩ C).

Hence, A, B,C are pairwise independent events but notmutually independent events.

2.1.3 Total Probability Rule

Definition 2.12 (Total ProbabilityRule) Let B1, B2, . . . ,be countably infinitemutu-
ally exclusive events in the probability space (Ω, S, P) such that Ω =

⋃
i

Bi where

P(Bi ) > 0 for i = 1, 2, . . .. Then, for any A ∈ S, we have

P(A) =
∑
i

P(A/Bi )P(Bi ).

Definition 2.13 (Multiplication Rule) Let A1, A2, . . . , An be arbitrary events in a
given probability space (Ω , S, P) such that P(A1 ∩ A2 ∩ · · · ∩ An−1) > 0, for any
n > 1, then

P(A1 ∩ A2 ∩ . . . An) = P(A1)P(A2/A1)P(A3/A1 ∩ A2) . . . P(An/A1 ∩ A2 ∩ . . . An−1).

(2.2)

Example 2.6 Consider an urn which contains ten balls. Let three of the ten balls are
red and other balls are blue. A ball is drawn at random at each trial, its color is noted,
and it is kept back in the urn. Also, two additional balls of the same color are also
added to the urn.

1. What is the probability that a blue ball is selected in the second trial?
2. What is the probability that a red ball is selected in the first three trials?

Solution:
Let Ri be the event that a red ball is selected in the i th trial.

1. We need to find P(Rc
2). By total probability rule,

P(Rc
2) = P(Rc

2/R1)P(R1) + P(Rc
2/R

c
1)P(Rc

1) = 7

12
× 3

10
+ 9

12
× 7

10
= 7

10
.

2. We require to find P(R1 ∩ R2 ∩ R3). By multiplication rule (Eq. (2.2)), we get
the probability that a blue ball is selected in each of the first three trials is

P(R1 ∩ R2 ∩ R3) = 3

10
× 5

12
× 7

14
= 0.0625.
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2.1.4 Bayes’ Theorem

We state a very important result in the form of the following theorem in conditional
probability which has wide applications.

Theorem 2.1 (Bayes’2 Rules (or Bayes’ Theorem)) Let B1, B2, . . . be a collection
of mutually exclusive events in the probability space (Ω ,S,P) such that Ω =

⋃
i

Bi

and P(Bi ) > 0 for i = 1, 2, . . .. Then, for any A ∈ S with P(A) > 0, we have

P(Bi/A) = P(A/Bi )P(Bi )∑
j

P(A/Bj )P(Bj )
.

Proof By the definition of conditional probability, for i = 1, 2, . . .

P(Bi/A) = P(Bi ∩ A)

P(A)
, P(A/Bi ) = P(Bi ∩ A)

P(Bi )
.

Combining above two equations, we get

P(Bi/A) = P(A/Bi )P(Bi )

P(A)
.

By total probability rule,

P(A) =
∑
j

P(A/Bj )P(Bj ).

Therefore, for i = 1, 2, . . .

P(Bi/A) = P(A/Bi )P(Bi )∑
j

P(A/Bj )P(Bj )
.

Example 2.7 A company produces and sells three types of products, namely I , I I ,
and I I I . Based on transactions in the past, the probability that a customer will
purchase product I is 0.75. Of those who purchase product I , 60% also purchase
product I I I . But 30% of product I I buyers purchase product I I I . A randomly

2Thomas Bayes (1702–1761) was a British mathematician known for having formulated a special
case of Bayes’ Theorem. Bayes’ Theorem (also known as Bayes’ rule or Bayes’ law) is a result in
probability theory, which relates the conditional andmarginal probability of events. Bayes’ theorem
tells how to update or revise beliefs in light of new evidence: a posteriori.
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selected buyer purchases two products out of which one product is I I I . What is the
probability that the other product is I?

Solution:
Let A be the event that a customer purchases product I , B be the event that a customer
purchases product I I , and E be the event that a customer purchases product I I I .
Then,

P(A) = 0.75, P(B) = (1 − 0.75) = 0.25, P(E/A) = 0.60 and P(E/B) = 0.30.

Probability that a customer purchased product I given that he has purchased two
products with one product being I I I is given by

P(A/E) = P(E/A)P(A)

P(E/A)P(A) + P(E/B)P(B)
= 0.60 × 0.75

0.60 × 0.75 + 0.25 × 0.30
= 6

7
.

Example 2.8 A box contains ten white and three black balls while another box
contains three white and five black balls. Two balls are drawn from the first box
and put into the second box, and then a ball is drawn from the second. What is the
probability that it is a white ball?

Solution:
Let A be the event that both the transferred balls are white, B be the event that both
the transferred balls are black, and C be the event that out of the transferred balls
one is black while the other is white. Let W be the event that a white ball is drawn
from the second box.

P(A) = 15

26
, P(B) = 1

26
, P(C) = 5

13
.

By total probability rule,

P(W ) = P(W/A)P(A) + P(W/B)P(B) + P(W/C)P(C).

If A occurs, box II will have five white and five black balls. If B occurs, box II will
have three white seven and black balls. If C occurs, box II will have four white and
six black balls.

P(W/A) = 5

10
, P(W/B) = 3

10
, P(W/C) = 4

10
.

Thus,

P(W ) = P(W/A)P(A) + P(W/B)P(B) + P(W/C)P(C)

=
(

5

10
× 15

26

)
+

(
3

10
× 1

26

)
+

(
4

10
× 10

26

)
= 59

130
.
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Example 2.9 There are 2000 autos, 4000 taxis, and 6000 buses in a city. A person
can choose any one of these to go from one place to other. The probabilities of an
accident involving an auto, taxi, or bus are 0.01, 0.03, and 0.15, respectively. Given
that the person met with an accident, what is the probability that he chose an auto?

Solution:
Let A, B, and C , respectively, be the events that the person hired an auto, a taxi, or
a bus; and E be the event that he met with an accident. We have,

P(A) = 2000

12000
= 1

6
, P(B) = 4000

12000
= 1

3
, P(C) = 6000

12000
= 1

2
.

Given,

P(E/A) = 0.01, P(E/B) = 0.03, P(E/C) = 0.15.

Thus, the probability that the person who met with an accident hired an auto is

P(A/E) = P(E/A)P(A)

P(E/A)P(A) + P(E/B)P(B) + P(E/C)P(C)

=
(
0.01 × 1

6

)
0.01 × 1

6 + 0.03 × 1
3 + 0.015 × 1

2

= 2

23
.

2.2 Random Variable and Distribution Function

For mathematical convenience, it is often desirable to associate a real number to
every element of the sample space. With this in mind, we define a random variable
as follows:

Definition 2.14 (Random Variable) A function X , which assigns to each element
w ∈ Ω a unique real number X (w) = x , is called a random variable (RV).

Since X is a real-valued function, the domain of X is the sample space Ω and co-
domain is a set of real numbers. The set of all values taken by X , called the image of
X or the range of X , denoted by RX , will be a subset of the set of all real numbers.

Remark 2.2 1. The term “random variable” is actually not an appropriate term,
since a random variable X is really a function. When we say that X is a random
variable, we mean that X is a function from Ω to the real line; i.e., (−∞,∞)

and X (w) are the values of the function at the sample point w ∈ Ω .
2. A random variable partitions the sample space Ω into mutually exclusive and

collectively exhaustive set of events. We can write

Ω =
⋃
x∈RX

Ax , such that Ax ∩ Ay = ∅ if x �= y
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where
Ax = {w ∈ Ω | X (w) = x}, x ∈ RX (2.3)

is the collection of the sample points such that {X (w) = x} and is an event.

Now, we consider different types of random variables based on RX , the image of
X . We classify them into three cases: the first case in which the random variable
assumes at most countable number of values, the second case where the random
variable assumes the value of some interval or within any collection of intervals, and
the third case in which the random variable assumes both types of values.

Definition 2.15 (Cumulative Distribution Function) Let X be a random variable
defined on probability space (Ω, S, P). For every real number x , we have

P(X ≤ x) = P{w ∈ Ω : X (w) ≤ x}, − ∞ < x < ∞.

This point function is denoted by the symbol F(x) = P(X ≤ x). The function
F(x) (or FX (x)) is called the cumulative distribution function (CDF) of the random
variable X .

F(x) satisfies the following properties:

1. 0 ≤ F(x) ≤ 1,−∞ < x < ∞.
2. F(x) is a nondecreasing function of x . That is, for any a < b, we have

F(a) ≤ F(b).
3. lim

x→−∞ F(x) = 0 and lim
x→+∞ F(x) = 1.

4. F(x) is a (right) continuous function of x . That is, for any x , we have
lim
h→0

F(x + h) = F(x).

2.2.1 Discrete Type Random Variable

Definition 2.16 (Discrete Type Random Variable) A random variable X is called
a discrete type random variable if there exists a countable set E ⊆ R such that
P(X ∈ E) = 1. The points of E that have positive mass are called jump points.

Thus, for a discrete type random variable, we may list down the possible values of
X as x1, x2, . . . , xn, . . ., where the list may terminate for some finite n or it may
continue indefinitely. That means if X is a discrete type random variable, then its
range space RX is finite or countably infinite.

Let X be a random variable assuming values x1, x2, . . . , xn, . . . with respective
probabilities p(x1), p(x2), . . . , p(xn), . . .. From definition, we have

FX (x) =
∑
i∈I

p(xi )
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where I = {i; xi ≤ x}. We note that FX (x) is right continuous and P(X = xi ) =
p(xi ) = FX (xi ) − FX (x−

i ). In conclusion, if X is a discrete type random variable,
then its probabilities can be obtained from its cumulative distribution function and
vice versa.

By the definition of a randomvariable and the concept of an event space introduced
in the earlier section, it is possible to evaluate the probability of the event Ax .We have
defined the event Ax , in Eq. (2.3), as the set of all sample points {w ∈ Ω| X (w) = x}.
Consequently,

P(Ax ) = P{X = x} = P{w ∈ Ω : X (w) = x} =
∑

{w∈Ω:X (w)=x}
P{w}.

This formula provides us with a method of computing P(X = x) for all x ∈ R.

Definition 2.17 (Probability Mass Function) Let X be a discrete type random vari-
able defined onΩ of a random experiment and taking the values {x1, x2, . . . , xi , . . .}.
A function with its domain consisting of real numbers and with its range in the closed
interval [0, 1] is known as the probability mass function (PMF) of the discrete type
random variable X and will be denoted by p(x). It is defined as

p(xi ) = P(X = xi ) =
∑

{w∈Ω| X (w)=xi }
P{w}, i = 1, 2, . . . . (2.4)

Then, the collection of pairs {(xi , p(xi )), i = 1, 2, . . .} is called the probability dis-
tribution of the discrete type random variable X .

The following properties hold for the PMF:

1. p(xi ) ≥ 0 ∀ i
2.

i

∑
p(xi ) = 1.

Clearly, we have the following information associated with a discrete type random
variable X as shown in Table 2.1.

The advantage of the probability distribution is that it helps us to evaluate the
probability of an event associated with a discrete type random variable X . So far, we
have restricted our attention to computing P(X = x), but often we may be interested
in computing the probability of the set {w ∈ Ω | X (w) ∈ B} for some subset B of
R other than a one-point set. It is clear that

{w ∈ Ω | X (w) ∈ B} =
⋃
xi∈B

{w ∈ Ω | X (w) = xi }.

Table 2.1 Probability of the random variable X

X = x x1 x2 · · · xi · · ·
p(x) p(x1) p(x2) · · · p(xi ) · · ·
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Usually this event is denoted by [X ∈ B] and its probability by P(X ∈ B). Let
I = {i ∈ N

+ | xi ∈ B}. Then, P(X ∈ B) is evaluated as:

P(X ∈ B) = P({w ∈ Ω | X (w) ∈ B})
=

∑
i∈I

P(X = xi ) such that xi ∈ B

=
∑
i∈I

p(xi ). (from Eq. (2.4))

Thus, the probability of an event {B ⊆ R} is evaluated as the sum of the probabilities
of the individual outcomes consisting the event B. Also, in every finite interval [a, b],
there will be at most countable number of possible values of the discrete type random
variable X . Therefore

P(a ≤ X ≤ b) =
∑
i

P(X = xi ) =
∑
i

p(xi ) such that xi ∈ [a, b].

If the interval [a, b] contains none of the possible values xi , we assign
P(a ≤ X ≤ b) = 0.The semi-infinite interval A = (−∞, x]will be of special interest,
and in this case, we denote the event [X ∈ A] by [X ≤ x].
Example 2.10 A fair coin is tossed two times. Let X be the number of heads that
appear. Obtain the probability distribution of the random variable X . Also compute
P[0.5 < X ≤ 4], P[−1.5 ≤ X < 1] and P[X ≤ 2].
Solution:
In this example, the possible values for X are 0, 1, and 2, respectively. Hence,

PX (0) = P(X = 0) = P((T, T )) = 0.25,

PX (1) = P(X = 1) = P((T, H)) + P((H, T )) = 0.25 + 0.25 = 0.5,

PX (2) = P(X = 2) = P((H, H)) = 0.25.

Now,

P(0.5 < X ≤ 4) = P(X = 1) + P(X = 2) = 0.75,

P(−1.5 ≤ X < 1) = P(X = 0) = 0.25,

P(X ≤ 2) = P(X = 0) + P(X = 1) + P(X = 2) = 1.

The probability mass function of the random variable X is shown in Table 2.2.

Table 2.2 Probability mass function of random variable X (Example 2.10)

X = x 0 1 2

p(x) 0.25 0.5 0.25



30 2 Review of Probability

Example 2.11 Two fair dice are tossed and let X be the sum of the numbers on the
two faces shown. Find the CDF of X .

Solution:
The possible values of X are {2, 3, . . . , 12}. The CDF of X is given by

x 2 3 4 5 6 7 8 9 10 11 12

F(x) 1
36

3
36

6
36

10
36

15
36

21
36

26
36

30
36

33
36

35
36 1

Example 2.12 Let 30% of the items in a box are defective. Five items are selected
from this box. What is the probability distribution of number of defective items out
of those five items.

Solution:
The probability that an item is defective is 0.3. Let X denote the number of defective
items among the selected 5 items. Then, X ∈ {0, 1, 2, 3, 4, 5}. The PMF of X is
given by

PX (i) = P(X = i) =
{(

5
i

)
(0.3)i (1 − 0.3)5−i , i = 0, 1, . . . , 5

0, otherwise
.

Example 2.13 Consider the random variable X that represents the number of people
who are hospitalized or died in a single head-on collision on the road in front of
a particular spot in a year. The distribution of such random variables is typically
obtained from historical data. Without getting into the statistical aspects involved,
let us suppose that the CDF of X is as follows:

x 0 1 2 3 4 5 6 7 8 9 10
F(x) 0.250 0.546 0.898 0.932 0.955 0.972 0.981 0.989 0.995 0.998 1.000

Find P(X = 10) and P(X ≤ 5/X > 2).

Solution:
We know that

P(X = 10) = P(X ≤ 10) − P(X < 10).

Therefore, P(X = 10) = 1.000 − 0.998 = 0.002.Using conditional probability, we
have

P(X ≤ 5/X > 2) = P(2 < X ≤ 5)

P(X > 2)
= P(X ≤ 5) − P(X ≤ 2)

1 − P(X ≤ 2)

= F(5) − F(2)

1 − F(2)
= 0.972 − 0.898

1 − 0.898
= 0.725.
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2.2.2 Continuous Type Random Variable

In the last section, we studied cases such as tossing of a coin or throwing of a dice
in which the total number of possible values of the random variable was at most
countable. In such cases, we have studied the probability mass function of ran-
dom variables. Now, let us consider another experiment say choosing a real number
between 0 and 1. Let the random variable be the chosen real number itself. In this
case, the possible values of the random variable are uncountable.

In such cases, we cannot claim for P[X = x], but if we say that in choosing a real
number between 0 and 1, find the probability P[a ≤ X ≤ b], then the probability
can be calculated for any constants a and b. In such cases, we cannot claim for a
nonzero probability at any point, but we can claim for P[X ≤ x]. From the above
experiment, one can consider random variables which assume value in an interval or
a collection of intervals. These types of random variables are known as continuous
type random variables. These random variables generally arise in the experiments
like measuring some physical quantity or time.

Unlike in the discrete type random variable, a continuous type random variable
assumes uncountably infinite number of values in any specified interval, however
small it may be. Thus, it is not realistic to assign nonzero probabilities to values
assumed by it. In the continuous type, it can be shown that for any realization x
of X ,

P(X = x) = 0. (2.5)

Hence,

P(X ≤ x) = P(X < x) for any x ∈ R. (2.6)

Definition 2.18 (Probability Density Function) Let X be a continuous type random
variable with CDF F(x). The CDF F(x) is an absolutely continuous function; i.e.,
there exists a nonnegative function f (x) such that for every real number x , we have

F(x) =
∫ x

−∞
f (t)dt.

The nonnegative function f (x) is called the probability density function (PDF) of
the continuous type random variable X .

Since F(x) is absolutely continuous, it is differentiable at all x except perhaps at a
countable number of points. Therefore, using fundamental theorem of integration,
we have f (x) = dF(x)

dx , for all x , where F(x) is differentiable. F ′(x) may not exist
on a countable set say {a1, a2, . . . , ai , . . .} but since the probability of any singleton
set is zero, we have
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P(X ∈ {a1, a2, . . . , ai , . . .}) =
∑
i

P(X = ai ) = 0.

Thus, the set {a1, a2, . . . , ai , . . .} is not of much consequence and we define

dF(x)

dx
= 0, f or x ∈ {a1, a2, . . .}.

With this, we can say that

f (x) = dF(x)

dx
∀ x ∈ R.

For instance, consider a random variable X with CDF F(x) = √
2 sin x when

x ∈ [0, π/4). Clearly, F(x) has a nonzero derivative in the interval (0, π/4). Hence,
there exists a function f (x), known as PDF such that

f (x) =
{√

2 cos x, x ∈ (0, π/4)
0, otherwise

.

We shall use the convention of defining the nonzero values of the PDF f (x)
only. Thus, when we write f (x), a ≤ x ≤ b, it is understood that f (x) is zero for
x /∈ [a, b]. A probability density function satisfies the following properties:

(i) f (x) ≥ 0 for all possible values of x .

(ii)
∫ ∞

−∞
f (x)dx = 1.

Property (i) follows from the fact that F(x) is nondecreasing and hence its derivative
f (x) ≥ 0, while (ii) follows from the property that lim

x→∞ F(x) = 1.

Remark 2.3 1. f (x) does not represent the probability of any event. Only when
f (x) is integrated between two limits, it yields the probability. Furthermore, in
the small interval Δx , we have

P(x < X ≤ x + Δx) ≈ f (x)Δx . (2.7)

2. The CDF F(x) at x = a can be geometrically represented as the area under the
probability density curve y = f (x) in the xy−plane, to the left of the abscissa
at the point a on the axis. This is illustrated in Fig. 2.1.

3. For any given a, b with a < b,

P(X ∈ (a, b)) = F(b) − F(a) =
∫ b

−∞
f (x)dx −

∫ a

−∞
f (x)dx =

∫ b

a
f (x)dx .
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Fig. 2.1 Geometrical
interpretation of f (x) and
F(a)

Fig. 2.2 Probability that X
lies between a and b

Hence, the area under the curve y = f (x) between the two abscissa at x = a
and x = b, a < b, represents the probability P(X ∈ (a, b)). This is illustrated
in Fig. 2.2.

4. For any continuous type random variable,

P(x1 < X ≤ x2) = P(x1 ≤ X < x2) = P(x1 < X < x2) = P(x1 ≤ X ≤ x2)

and hence we have,
P(X = x) = 0, ∀x ∈ R.

5. Every nonnegative real-valued function, that is integrable over R and satisfies∫ ∞

−∞
f (x)dx = 1, is a PDF of some continuous type random variable X .

Example 2.14 Consider a random experiment to test the lifetime of a light bulb. The
experiment consists of noting the time when the light bulb is turned on, and the time
when it fails. Let X be the random variable that denotes the lifetime of the light bulb.
Assume that the CDF of X is as given below:
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F(x) =
⎧⎨
⎩
0, −∞ < x < 0
kx, 0 ≤ x < 100
1, 100 ≤ x < ∞.

where k is a constant. Find a. What is the probability that the lifetime of light bulb
is between 20 and 70h.

Solution:
Given that F(x) is a cumulative distribution function of the continuous type random
variable, it has to be absolutely continuous. Applying continuity at x = 100, we get,

100k = 1

⇒ k = 1

100
.

Now,

P(20 ≤ X ≤ 70) = P(X ≤ 70) − P(X ≤ 20) = F(70) − F(20) = 50k = 0.5.

Example 2.15 Find the value of k for which the function

f (x) =
{
kx2, 0 ≤ x ≤ 1
0, otherwise

is the PDF of a random variable X and then compute P
(
1
3 < X < 1

2

)
.

Solution:
As the given function is a PDF, its integration over the real line must be unity.

k
∫ 1

0
x2dx = 1 =⇒ k = 3.

Now,

P

(
1

3
< X <

1

2

)
=

∫ 1
2

1
3

3x2dx = 19

216
.

2.2.3 Function of a Random Variable

Let X be a RV and assume that its distribution is known. We are interested to find the
distribution of Y = g(X), provided that Y is also a RV, where g is a function defined
on the real line. We have the following result that gives the distribution of Y .
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Table 2.3 Probability mass
function of X

X −2 −1 0 1 2

P(X = x) 1
5

1
6

1
5

1
15

11
30

Result: Let X be a RV defined on the probability space (Ω, S, P). Let g be a Borel
measurable function on R. Then, g(X) is also a RV and its distribution is given by

P(g(X) < y) = P(X ≤ g−1(y)) for all y ∈ R.

Note that, every continuous or piecewise continuous functions are Borel measurable
functions. For example, |X |, aX + b (where a �= 0 and b are constants), Xk (where
k > 0 is an integer), and |X |a (a > 0) are all RVs.

Example 2.16 Let X be a discrete type randomvariablewith PMFgiven in Table 2.3.
Define Y = X2. Find PMF of Y .

Solution:
The possible values of Y are {0, 1, 4}. Now, P(Y = 0) = P(X = 0), P(Y = 1) =
P(X = −1) + P(X = 1) and P(X = 4) = P(X = −2) + P(X = 2). Therefore,
the PMF of Y is given as

P(Y = y) =

⎧⎪⎨
⎪⎩

1
5 , y = 0
1
6 + 1

15 = 7
30 , y = 1

1
5 + 11

30 = 17
30 , y = 4

.

For continuous type random variable, we have the following result that gives the
distribution of a random variable of continuous type.

Result: Let X be a continuous type RV with PDF f (x). Let y = g(x) be a function
satisfying following conditions

• g(x) is differentiable for all x ,
• g′(x) is continuous and nonzero at all but a finite number of values of x .

Then, for every real number y,

1. There exist a positive integer n = n(y) and real numbers x1(y), x2(y), . . . , xn(y)
such that g[xk(y)] = y and g′(xk(y)) �= 0, k = 1, 2, . . . , n(y), or

2. There does not exist any x such that g(x) = y, g′(x) �= 0, in which case we write
n(y) = 0.

Then, Y is a continuous type RV with PDF given by

h(y) =

⎧⎪⎨
⎪⎩

n(y)∑
k=1

f (xk(y))|g′(xk(y))|−1, n(y) > 0

0, otherwise

.
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Example 2.17 Let X be a continuous type random variable with PDF given as

f (x) = 1√
2π

e
−x2

2 , − ∞ < x < ∞.

Let Y be another random variable such that Y = X2. Find the PDF of Y .

Solution:
We know that the PDF of Y is given by

fY (y) =
n∑

k=1

fX (g−1
k (y))

∣∣∣∣∣dg
−1
k (y)

dy

∣∣∣∣∣ .
Here, g−1

1 (y) = √
y and g−1

2 (y) = −√
y. Therefore, we have, for 0 < y < ∞

fY (y) = 1

2
√
2yπ

e
−y
2 + 1

2
√
2yπ

e
−y
2 = 1√

2yπ
e

−y
2 . (2.8)

We will see later that Y is a chi-square distribution with parameter 1. Thus, the
square of a standard normal random variable is a chi-square random variable with
parameter 1.

2.3 Moments and Generating Functions

The CDF F(x) completely characterizes the behavior of a random variable X . How-
ever, in applications, the study of distribution of a random variable is essentially the
studyof numerical characteristics associatedwith the randomvariable. In this section,
we discuss the mean, variance, other higher moments, and generating functions of a
random variable X .

2.3.1 Mean

Let X be a random variable defined on (Ω, S, P). The expected value or mean of
X , denoted by E(X) or μ, is defined as follows:

Definition 2.19 (Mean of a discrete type RV) Let X be a discrete type random
variable with possible values (or mass points) x1, x2, . . . , xi , . . .. The mean or aver-
age or expectation of the discrete type random variable X , denoted by E(X), is
defined by:

E(X) =
∑
i

xi p(xi ). (2.9)
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provided the sum is absolutely convergent, i.e.,
∑
i

| xi | p(xi ) < ∞ or

E(| X |) < ∞.

Definition 2.20 (Mean of a continuous type RV) If X is a continuous type random
variable with PDF f (x), then the expectation of X is defined by:

E(X) =
∫ ∞

−∞
x f (x)dx

provided the integral converges, i.e.,
∫ ∞

−∞
| x | f (x)dx < ∞ or E(| X |) < ∞.

Example 2.18 Consider the random variable X with PDF (known as Cauchy distri-
bution)

f (x) = 1
π(1+x2) , − ∞ < x < ∞.

Check whether E(X) exists or not.

Solution:
We know that,

1

π

∫ ∞

−∞
x

1 + x2
dx = 0 < ∞.

However, E(X) does not exist since E (|X |) does not converge as shown below.

E(| X |) = 1

π

∫ ∞
−∞

| x |
1 + x2

dx = 2

π

∫ ∞
0

x

1 + x2
dx = 1

π
log | 1 + x2 |→ ∞ as x → ∞.

Example 2.19 Let X be a random variable with possible values {x1, x2, . . . , xn} such
that P(X = xi ) = 1

n ∀ i . Find E(X).

Solution:
By definition of expectation, we have

E(X) =
n∑

i=1

xi P(X = xi ) = 1

n

n∑
i=1

xi .

Thus, E(X) can be interpreted as the weighted average of the distribution of X with
weights p(xi ) of xi . In particular, if p(xi ) = 1

n , i = 1, . . . , n, then E(X) is the usual
arithmetic mean.

Some Important Results:

1. For any constant a, E(a) = a.
2. E(aX + b) = aE(X) + b where a and b are two constants.
3. If X ≥ 0, then E(X) ≥ 0.
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Remark 2.4 1. It is to be noted that, for a given random variable, expectation is
always a constant.

2. Since any random variable X can be written as X = X+ − X− and |X | = X+ +
X−, E(|X |) < ∞ is taking care of removing the cases of infinite mean. Since
E(X) = E(X+) − E(X−), the mean of X exists if E(X+) and E(X−) have
finite values.

3. E(X) is the center of gravity (centroid) of the unit mass that is determined by
the probability mass function (if X is a discrete type random variable) or by the
probability density function (if X is a continuous type random variable). Thus,
the mean of X is a measure of where the values of the random variable X are
centered.

2.3.2 Variance

Another quantity of great importance in probability and statistics is called variance
and is defined as follows:

Definition 2.21 (Variance of a RV) Let X be a discrete type random variable with
possible values x1, x2,. . ., xi ,. . .. The variance of the discrete type random variable
X , denoted by Var(X), is defined by:

Var(X) = E
(
(X − μ)2

) =
∑
i

(xi − μ)2 p(xi ) (2.10)

provided the sum is absolutely convergent. Similarly, the variance of continuous type
random variable is defined as

Var(X) =
∫ ∞

−∞
(x − μ)2 f (x)dx (2.11)

provided the integral is absolutely convergent.

Note that Var(X) is always a nonnegative number. The positive square root of the
variance is known as the standard deviation of the random variable X or average
squared deviation of X from it’s mean.

Remark 2.5 1. The variance (and so the standard deviation) is a measure of spread
(or “dispersion” or “scatter”) of values of a random variable X about it’s mean
μ. The variance of X is small if the values are concentrated near the mean, and
variance is large if the values are distributed away from the mean.

2. Note that if X has certain dimensions or units, such as centimeters (cm), then
the variance of X has units cm2 while the standard deviation has the same unit
as X , i.e., cm.
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Some Important Results:

1. Var(X) ≥ 0. If Var(X) = 0, then X is a constant random variable with
P(X = μ) = 1.

2. Var(X) = E(X2) − [E(X)]2.
3. For any constant c,

Var(cX) = c2Var(X).

4. The quantity E[(X − b)2] is minimum when b = μ = E(X).

2.3.3 Moment of Order n

Definition 2.22 (Moment of Order n) Let X be a random variable and c be any
constant. The moment of order n about c of the random variable X is defined by:

E((X − c)n) =

⎧⎪⎪⎨
⎪⎪⎩

∫ ∞

−∞
(x − c)n f (x)dx, if X is continuous type∑

i

(xi − c)n p(xi ), if X is discrete type

where n is a nonnegative integer provided the sum (or integral) is absolutely conver-
gent.

When c = μ, it is called central moment or moment about the mean of order n,
denoted by μn , and is given by

μn = E((X − μ)n) =

⎧⎪⎪⎨
⎪⎪⎩

∫ ∞

−∞
(x − μ)n f (x)dx, if X is continuous type∑

i

(xi − μ)n p(xi ), if X is discrete type
.(2.12)

We have μ0 = 1, μ1 = E(X) and μ2 = Var(X) = σ 2.
When c = 0, we define the moment μ

′
n of order n about the origin of the random

variable X as

μ
′
n = E(Xn) =

⎧⎪⎪⎨
⎪⎪⎩

∫ ∞

−∞
xn f (x)dx, if X is continuous type∑

i

xni p(xi ), if X is discrete type
. (2.13)

Note that μ
′
0 = 1, μ

′
1 = E(X) = μ.

Expanding (X − μ)n in Eq. (2.12) by binomial theorem and using Eq. (2.13), we
get the relationship between the nth central moment and the moments about the
origin of order less than or equal to n. we have,
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μn = E (X − E(X))n = E
[ n∑
k=0

(n
k

)
Xk(−E(X))n−k

]

=
n∑

k=0

(n
k

)
μ

′
k(−μ

′
1)

n−k

= μ
′
n −

(n
1

)
μ

′
n−1μ + · · · + (−1)r

(n
r

)
μ

′
n−rμ

r + · · · + (−1)nμn

where μ = μ′
1. Thus,

μ2 = μ
′
2 − (μ

′
1)

2

μ3 = μ
′
3 − 3μ

′
2μ

′
1 + 2(μ

′
1)

3 (2.14)

μ4 = μ
′
4 − 4μ

′
3μ

′
1 + 6μ

′
2(μ

′
2)

2 − 3(μ
′
1)

4.

Example 2.20 Find the first four moments about the mean for the continuous type
random variable whose PDF is given as

f (x) = 1√
2π

e
−x2

2 , − ∞ < x < ∞.

Solution: Now,

E(X) =
∫ ∞

−∞
x f (x)dx =

∫ ∞

−∞
x

1√
2π

e
−x2

2 dx = 0.

E(X2) =
∫ ∞

−∞
x2 f (x)dx =

∫ ∞

−∞
x2

1√
2π

e
−x2

2 dx = 1.

E(X3) =
∫ ∞

−∞
x3 f (x)dx =

∫ ∞

−∞
x3

1√
2π

e
−x2

2 dx = 0.

E(X4) =
∫ ∞

−∞
x4 f (x)dx =

∫ ∞

−∞
x4

1√
2π

e
−x2

2 dx = 3.

Using Eq. (2.14), we have

μ1 = 0, μ2 = 1 μ3 = 0 μ4 = 3.

2.3.4 Generating Functions

Now, we discuss the generating functions, namely probability generating function,
moment generating function, and characteristic function that generate probabilities
or moments of a random variable.
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Definition 2.23 (Probability Generating Function) Let X be a nonnegative integer-
valued random variable. Then, the probability generating function (PGF) of X with
probability mass function (pmf) P(X = k) = pk, k = 0, 1, 2, . . . , is defined as

GX (t) =
∞∑
k=0

pkt
k, |t | ≤ 1.

Remark 2.6 1. GX (1) =
∞∑
k=0

pk = 1.

2. pk = 1
k!

dk

dtk GX (t)|t=0, k = 1, 2, . . ..
3. E(X (X − 1) . . . (X − n)) = dn

dtn GX (t)|t=1. We say E(X (X − 1) . . . (X − n))

as factorial moment of order n.

Example 2.21 Let X be a random variable with PMF given by

P(X = k) =
(n
k

)
pk(1 − p)n−k, k = 0, 1, 2, . . . , n.

Find PGF of X .

Solution:

GX (t) =
n∑

k=0

t k
(n
k

)
pk(1 − p)n−k =

n∑
k=0

(n
k

)
(pt)k(1 − p)n−k = (pt + 1 − p)n.

Definition 2.24 (Moment Generating Function) Let X be a random variable. The
moment generating function (MGF) of X is defined as

M(t) = E(et X ), t ∈ R

provided the expectation exists in some neighborhood of the origin.
Note that

MX (t) = E(et X ) = E(1 + t X

1! + t2X2

2! + · · · ) = 1 + t E(X)

1! + t2E(X2)

2! + · · · .

Example 2.22 Let X be a continuous type random variable with PDF

f (x) =
{

1
3e

−x
3 , x > 0

0, otherwise
.

Then, find MGF.
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Solution:

M(t) =
∫ ∞

−∞
etx f (x)dx =

∫ ∞

0
etx

1

3
e

−x
3 dx = 1

1 − 3t
, 3t < 1.

Remark 2.7 1. The MGF uniquely determines a distribution function and con-
versely, if the MGF exists, it is unique.

2. The nth order moment of X can be calculated by differentiating theMGF n times
and substituting t = 0,

E(Xn) = dnM(t)

dtn

∣∣∣∣
t=0

.

Example 2.23 Find MGF of the random variable X with PDF

f (x) = 1

σ
√
2π

e
−(x−μ)2

2σ2 , − ∞ < x < ∞.

Deduce the first four moments about origin.

Solution:

MX (t) = E(et X ) =
∫ ∞

−∞
etx

1

σ
√
2π

e
−(x−μ)2

2σ2 dx .

Let z = x−μ

σ
, then x = zσ + μ and we have

MX (t) = eμt
∫ ∞

−∞
ezσ t

1√
2π

e
−z2

2 dz = eμt e
(σ t)2

2 = eμt+ (σ t)2

2 .

Now, we know that

E(Xn) = dnM(t)

dtn

∣∣∣∣
t=0

.

Therefore, we have

E(X) = μ.

E(X2) = μ2 + σ 2.

E(X3) = μ3 + 3μσ 2.

E(X4) = μ4 + 6μ2σ 2 + 3σ 4.

The above results can be verified from Example (2.20) with μ = 0 and σ 2 = 1.

Definition 2.25 (Characteristic Function) Let X be a random variable. The charac-
teristic function of X is defined as,
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ΨX (t) = E(eit X ), i = √−1, t ∈ R

provided the expectation exists in some neighborhood of the origin.
Note that

ΨX (t) = E(eit X ) = E(1 + i t X

1! + (i t)2X2

2! + · · · ) = 1 + i t E(X)

1! − t2E(X2)

2! + · · · .

For example, the characteristic function for the PDF given in Example 2.23 is
eiμt− 1

2 σ 2t2 .

Remark 2.8 1. For any random variable X , E(|eit X |) ≤ 1. Hence, characteristic
function of X always exists unlike MGF.

2. Ψ (0) = 1.
3. |Ψ (t)| ≤ 1 for all t ∈ R.
4. The nth ordermoment of X can be calculated by differentiating the characteristic

function n times and substituting t = 0 as follows:

E(Xn) = 1

i n
dnΨX (t)

dtn

∣∣∣∣
t=0

.

Remark 2.9 1. As we have already seen, themean of a random variable X provides
a measure of central tendency for the values of a distribution. Although the mean
is commonly used, two measures of central tendency are also employed. These
are the mode and median.

2. The mode of a discrete type random variable is that value which occurs most
often, or in other words, has the greatest probability of occurring. Sometimes
we have two or more values that have the same relatively large probability of
occurrence. In such cases, we say that the distribution is bi-model, tri-model, or
multi-model. The mode of a continuous type random variable X is where the
probability density function has a relative maximum.

3. The median is that value x for which P(X ≤ x) ≤ 1
2 and P(X > x) ≤ 1

2 .
In the case of a continuous type random variable, we have P(X < x) = 1

2= P(X > x), and the median separates the density curve into two parts hav-
ing an equal area of 1

2 each. In the case of a discrete type random variable, a
unique median may or may not exist.

2.4 Standard Probability Distributions

In many practical situations, some probability distributions occur frequently. These
distributions describe several real-life random phenomena. In this section, we intro-
duce some commonly used probability distributions with various examples.
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2.4.1 Standard Discrete and Continuous Distributions

First, we present the standard discrete distributions. Table 2.4 shows some standard
discrete distributions along with PMF, mean, variance, andMGF. Note that constants
appearing in the probability distribution of random variables are called parameters
of that probability distribution.

Example 2.24 In a city, suppose that only 60% of the people read a newspaper.
What is the probability that four out of a sample of five persons will be reading a
newspaper?

Solution:
Let the success be termed as a person reading a newspaper. According to the given
data, if p denotes the probability of success, then p = 0.6, q = 1 − p = 0.4. Here
the sample chosen consists of five drivers, n = 5.

Let X denote the number of persons reading a newspaper, then the required prob-
ability is

P(X = 4) =
(
5

4

)
(0.6)4(0.4)1 = 0.259.

Example 2.25 If a fair coin is successively tossed, find the probability that the first
head appears on the fifth trial.

Solution:
Consider a random experiment of tossing a fair coin. The event “getting head” is
termed as success and “p” denotes the probability of success. Then, p = 0.5 and
q = 1 − p = 0.5. We want to find the probability that a head first appears on the
fifth trial; that is, first four trials result in a “tail.” If X denotes the number of trials
until a head appears, then

P(X = 4) = q4 p =
(
1

2

)4 1

2
.

Example 2.26 A market order is a buy or sell order to be executed immediately at
current market prices. As long as there are willing sellers and buyers, market orders
are filled. Suppose a brokerage firm receives on an average eight market orders per
hour and a trader can only process one order at a time. Assume that there are sufficient
amount of counter-parties available for each order (that is for every buy/sell order
our firm places, there are traders with opposite positions of sell/buy). How many
traders should be kept at a time in order that 90% of the orders are met?

Solution:
Let the number of traders required are k and X be the number of orders received by
firm in an hour. We have a Poisson distribution in hand with λ = 8. To obtain k we
have,
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P(X = 0) + P(X = 1) + · · · + P(X = k) = e−λ

(
1 + λ

1
+ · · · + λk

k!
)

= 0.90.

Keep increasing number of terms so that the probability becomes 0.9. Hence, the
value of k obtained from the above equation is 12.

Example 2.27 A manufacturer produces electric bulb, 1% of which are defective.
Find the probability that there is no defective bulb in a box containing 100 bulbs.

Solution:
Let X denote the number of defective bulbs in the box. Clearly, X follows binomial
distribution with n = 100 and p = 0.01. We need to find the probability that there
is no defective bulb, i.e., P(X = 0), which is given by

P(X = 0) =
(
100

0

)
(0.01)0(0.99)100 = (0.99)100 = 0.366.

However, as n is large and p is small, the required probability can be approxi-
mated by using the Poisson approximation of binomial distribution as follows. Here,
λ = np = 100 × 0.01 = 1. Therefore, by the Poisson distribution,

P(X = 0) = e−λλ0

0! = e−1 = 0.3679.

Now,we discuss some standard continuous distributions. Table 2.5 gives the notation,
PDF, E(X), Var(X), and MGF for the standard continuous distributions.

Example 2.28 If X is uniform distributed over (0, 10), calculate that (i) P(X < 3)
(ii) P(X > 7) (iii) P(1 < X < 6).

Solution:
Since, X ∼ U (0, 10), the PDF of X is given by

f (x) =
{

1
10 , 0 ≤ x ≤ 10
0, otherwise

.

(i) P(X < 3) =
∫ 3

0

1

10
dx = 3

10
(ii) P(X > 7) =

∫ 10

7

1

10
dx = 3

10

(iii) P(1 < X < 6) =
∫ 6

1

1

10
dx = 1

2
.

Example 2.29 Lifetimes of VLSI chips manufactured by a semiconductor manu-
facturer is approximately exponentially distributed with parameter 0.2 × 10−6 h. A
computer manufacturer requires that at least 95% of a batch should have a lifetime
greater than 2.5 × 105 h. Will the deal be made?



2.4 Standard Probability Distributions 47

Ta
bl
e
2.
5

St
an
da
rd

co
nt
in
uo
us

di
st
ri
bu
tio

ns
S.
N
o.

D
is
tr
ib
ut
io
n
an
d
no
ta
tio

n
PD

F
f(
x)

M
ea
n

E
(
X

)

V
ar
ia
nc
e

V
(
X

)

M
G
F

M
(t

)

1
U
ni
fo
rm

X
∼

U
(a

,
b)

{
1

(b
−a

)
,

a
<

x
<

b

0,
ot
he
rw

is
e

(a
+b

)
2

(b
−a

)2
12

et
b
−e

ta
t(
b−

a)

2
E
xp
on
en
tia
l

X
∼

ex
p(

λ
)

{ λ
e−

λ
x
,

x
>

0

0,
ot
he
rw

is
e
, λ

>
0

1 λ
1 λ
2

λ
λ
−t

,
t
<

λ

3
G
am

m
a

X
∼

G
(r

,
λ
)

⎧ ⎨ ⎩xr
−1

λ
r
e−

x λ
Γ

(r
)

,
x

≥
0

0,
ot
he
rw

is
e
,

r
>

0,
λ

>
0

r λ
r λ
2

(1
−

t λ
)−

r
,
t
<

λ

4
B
et
a

X
∼

B
(α

,
β
)

⎧ ⎨ ⎩xα
−1

(1
−x

)β
−1

B
(α

,β
)

,
0

<
x

<
1

0,
ot
he
rw

is
e
,

α
>

0,
β

>
0

α
α
+β

α
β

(α
+β

)2
(α

+β
+1

)

∞ ∑ j=
0

tj

Γ
(
j
+

1)

Γ
(α

+
j)

Γ
(α

+
β
)

Γ
(α

+
β

+
j)

Γ
(α

)

5
L
og
no
rm

al
X

∼
L
og

no
rm

al
(μ

,
σ
2
)

1
xσ

√ 2π
e−

1 2
(
lo
g e

x−
μ

σ
)2

,
x

>
0,

μ
∈R

,
σ

>
0

eμ
+
1 2

σ
2

(e
σ
2

−
1)
e2

μ
+σ

2
D
oe
s
no
te
xi
st

6
C
au
ch
y

X
∼

C
(μ

,
θ
)

μ π
1

μ
2
+(

x−
θ
)2

,
−

∞
<

x
<

∞
,
μ

>
0,

θ
∈R

D
oe
s
no
te
xi
st

D
oe
s
no
te
xi
st

D
oe
s
no
te
xi
st

7
W
ei
bu
ll

X
∼

W
ei
bu

ll
(α

,
β
)

⎧ ⎨ ⎩α β
xα

−1
e−

xα β
,

x
≥

0

0,
ot
he
rw

is
e
,

α
>

0,
β

>
0

β
1 α

Γ
(1

+
1 α
)

β
2 α

[ Γ
(2

+
1 α

)
−

Γ
2
(1

+
1 α

)]
∞ ∑ n=
0

tn
β
n

n!
Γ

(1
+

1 α
),

α
≥

1



48 2 Review of Probability

Solution:
Let X be the random variable that denotes the lifetime of VLSI chips. Then,

P(X ≥ 2.5 × 105) =
∫ ∞

2.5×105
0.2 × 10−6e−0.2×10−6xdx

= e−0.2×10−6×2.5×105 = 0.9512 > 0.95.

Therefore, the deal will be made.

2.4.2 The Normal Distribution

Normal distribution or the Gaussian3 distribution is the most frequently used prob-
ability distribution since it serves as a realistic model in many practical scenarios.
Also due to an important result called central limit theorem, normal distribution
can be used to approximate a large family of probability distributions. Normal dis-
tribution is the underlying assumption in many of the commonly used statistical
procedures. Even if the underlying distribution deviates slightly from normal dis-
tribution assumption, still these procedures are useful to draw inferences about the
underlying variable. The significance of normal random variable in statistics will be
discussed in the remaining sections.

A random variable X is said to have a normal distribution if its PDF is given by

f (x) = 1

σ
√
2π

e− 1
2 (

x−μ

σ
)
2

, − ∞ < x < ∞. (2.15)

The constants−∞ < μ < ∞ and σ > 0 are the parameters of the distribution.When
X follows a normal distribution defined by Eq. (2.15), we write X ∼ N (μ, σ 2).

One can easily verify that the function f (x) in Eq. (2.15) represents a PDF. Firstly,
f (x) > 0 for every real x , since ex is positive for x ∈ R. Further by changing the
variable z = (x − μ)/σ , we have

∫ ∞

−∞
f (x)dx =

∫ ∞

−∞
1√
2π

e− 1
2 z

2
dz = 2

∫ ∞

0

1√
2π

e− 1
2 z

2
dz.

3Johann Carl Friedrich Gauss (30 April 1777–23 February 1855) was a Germanmathematician who
contributed significantly to many fields, including number theory, algebra, statistics. Sometimes
referred to as “greatest mathematician since antiquity,” Gauss had exceptional influence in many
fields of mathematics and science and is ranked as one of history’s most influential mathematicians.
He discovered the normal distribution in 1809 as a way to rationalize the method of least squares.
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Fig. 2.3 Form of PDF of normal distribution for different values of the σ 2

By changing the variable t = z2/2, we have

=
√
2√
π

∫ ∞

0
e−t t

− 1
2√
2
dt = 1√

π

∫ ∞

0
e−t t−1/2dt = 1√

π
Γ̇ (1/2) = 1√

π

√
π = 1.

(2.16)
Thus, f (x) in Eq. (2.15) represents a valid PDF.

The normal distribution with parameters μ = 0 and σ = 1 is referred to as the
standard normal distribution and is denoted by Z . If a random variable follows
standard normal distribution, we write Z ∼ N (0, 1). The PDF of Z is

f (z) = 1√
2π

e− 1
2 z

2
, − ∞ < z < ∞. (2.17)

Parameters do play a very important role in the making of a distribution. It decides
upon the nature of the distribution and its graph. For example, normal distribution is
a distribution with two parameters μ and σ . The form of the normal curve y = f (x)
defined in Eq. (2.15) is graphed in Fig. 2.3 for different values of σ .

Note that the curve is symmetrical about the point x = μ. The symmetry about
point μ is due to fact that

f (μ + t) = 1

σ
√
2π

e− t2

2σ2 = f (μ − t) for any t,

Using the calculus methods, we observe that the PDF f (x) attains its maximum at
x = μ. Also, the PDF is symmetric about the mean μ. Similarly, one can show that
the PDF has two points of inflection at x = μ ± σ and x-axis is an asymptote to the
PDF. These properties of the PDF make the PDF curve look like a bell and so it is
called a bell-shaped curve.



50 2 Review of Probability

Fig. 2.4 Form of normal PDF for different values of the μ

Observe from Fig. 2.4 that for a fixed value of σ , the PDF curve shifts its point of
symmetry to the new value when the value of μ changes without affecting the shape
of the curve. Thus, the parameterμ determines the location of the point of symmetry
of the curve. Therefore, the parameter μ is known as the location parameter of the
normal distribution.

By symmetry, the mean, the median, and the mode of the normal distribution each
equal μ. We can explicitly find the mean using definition as follows

E(X) =
∫ ∞

−∞
x

1

σ
√
2π

e− 1
2 (

x−μ
σ

)
2 =

∫ ∞

−∞
(μ + σ z)

1√
2π

e−z2/2dz, (substituting z = (x − μ)/σ)

= μ

∫ ∞

−∞
1√
2π

e−z2/2dz + σ

∫ ∞

−∞
ze−z2/2dz = μ.

where we have used the fact that the integrand in the first integral is PDF of standard
normal random variable and hence integral is 1. Since the integral is an odd function,
the second integral vanishes.

Observe in Fig. 2.3 that for a fixed value ofμ, the spread of the distribution changes
with change in the value of σ . Greater the value of σ , greater is the spread. If the
value tends to be concentrated near mean, the variance is small while the values tend
to be distributed far from the mean if the variance is large. Therefore, the parameter
σ is known as the scale parameter of the distribution and this behavior is because of
the fact that in case of normal distribution
Var(X) = σ 2. To prove it, we proceed as follows:

Var(X) =
∫ ∞

−∞
(x − μ)2 f (x)dx

where f (x), PDF of the normal distribution, is defined in Eq. (2.15). Substituting
z = (x − μ)/σ in the above equation, we get
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Var(X) = σ 2
∫ ∞

−∞
1

σ
√
2π

− z2e−z2/2σdz = σ 2 1√
2π

2
∫ ∞

0
z2e−z2/2dz.

Put z2

2 = t , we get

Var(X) = σ 2

√
2√
π

∫ ∞

0
2te−t dt√

2t
= σ 2 2√

π

∫ ∞

0
t
1
2 e−t dt = σ 2.

since
∫ ∞

0
t
1
2 e−t dt = Γ ( 32 ) and Γ ( 32 ) = 1

2Γ ( 12 ).

The first four moments of the normal distribution are given by (refer Exam-
ple 2.20)

E(X) = μ.

E(X2) = μ2 + σ 2.

E(X3) = μ3 + 3μσ 2.

E(X4) = μ4 + 6μ2σ 2 + 3σ 4.

The CDF F(x) of a normal distribution is

F(x) = P(X ≤ x) =
∫ x

−∞
1

σ
√
2π

e
−1
2 ( t−μ

σ )
2

dt. (2.18)

The integral on the right can not be explicitly expressed as a function of x . Using the
transformation z = (t − μ)/σ in Eq. (2.18), we can write F(x) in terms of a function
Φ(z) as follows

F(x) = Φ

(
x − μ

σ

)

where

Φ(z) = 1√
2π

∫ z

−∞
e

−s2

2 ds. (2.19)

Here, Φ(z) is the CDF of the standard normal random variable also called the stan-
dard normal probability integral. Thus, in order to find F(x) for a normal random
variable, i.e., N (μ, σ 2), we need to find Φ(z) is known where z = (x − μ)/σ . The
value of CDF Φ(z) of a standard normal random variable is extensively tabulated
and is given in Tables A.6 and A.7 in Appendix at the end of this book. Hence F(x),
for any general normal distribution for a given x , may be computed using the table.

One can observe by the symmetry of the standard normal random variable that
Φ(−z) = 1 − Φ(z) for any real z. The relation is established by noting that because
of symmetry the two unshaded areas under the standard normal curve in Fig. 2.5
are equal. The two unshaded areas represent P(Z ≤ z) = Φ(−z) and P(Z ≥ z) =
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Fig. 2.5 Area under PDF of
standard normal distribution
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1 − Φ(z), respectively. Because of this result, it is only necessary to tabulate φ(z)
for positive vales of z and Tables A.6 and A.7 in Appendix giveΦ(z) for nonnegative
values of z.

P(μ − σ < X < μ + σ) = P(−1 < Z < 1) = Φ(1) − Φ(−1) ≈ 0.68

P(μ − 2σ < X < μ + 2σ) = P(−2 < Z < 2) = Φ(2) − Φ(−2) ≈ 0.95

P(μ − 3σ < X < μ + 3σ) = P(−3 < Z < 3) = Φ(3) − Φ(−3) ≈ 0.99.

Hence, the following empirical rule holds as shown in Fig. 2.6.

1. 68% of all the observations on X will fall within the interval X − μ ± σ.

2. 95% of all the observations on X will fall within the interval X − μ ± 2σ.

3. 99.7% of all the observations on X will fall within the interval X − μ ± 3σ.

Fig. 2.6 Area under PDF of standard normal distribution



2.4 Standard Probability Distributions 53

Example 2.30 Assume that the height of students in a class is normal distributedwith
mean 5.6 feet and variance 0.04 feet. Assume further that the in order to participate
in an athletic tournament, height of students must be greater than 5.7 feet. Assume
that a student is selected, what is the probability that his height is more than 5.8 feet?

Solution:
Let H denote the height of a student in the class. It is given that H ∼ N (5.6, 0.04),
and the height of the selected student, like the height of any student to be selected,
is greater than 5.7. Hence the required probability is P(H ≥ 5.8/H ≥ 5.7). Using
the definition of the conditional probability, the probability equals

P(H ≥ 5.8, H ≥ 5.7)

P(H ≥ 5.7)
= P(H ≥ 5.8)

P(H ≥ 5.7)
= 1 − F(5.8)

1 − F(5.7)
= 1 − Φ(1.0)

1 − Φ(0.5)
= 0.1587

0.3085
= 0.5144

where Φ(1.0) and Φ(0.5) are obtained from Appendix in Table A.7.

Normal Probability Points

The table for Φ(z) can be used to find by interpolation, the probability points of
normal distribution N (0, 1). In other words, given α, one can find zα such that
Φ(zα) = α. For a given probability 0 < α < 1, the point z = zα is called the lower
100α percent normal probability point. Itmay also be referred to as the upper 100(1 −
α) percent normal probability point. Values of zα given below are obtained from
Appendix. Table A.7

α 0.25 0.50 0.90 0.95 0.975 0.99
zα 0.675 0.00 1.28 1.64 1.96 2.33

Sum of n Independent Normal random variables: Let X1, . . . , Xn be n indepen-
dent normal distributed random variables with mean and variance of Xi as μi and
σ 2
i . The product of moment generating function of the sum S = X1 + · · · + Xn is

the product of the MGF’s of X1, . . . , Xn . Hence, we have MGF of sum is

MS(t) = Πn
i=1MXi (t) = exp

(
μt + σ 2t2

2

)

where μ =
n∑

i=1

μi and σ 2 =
n∑

i=1

σ 2
i so that the sum is exactly normal distributed

with the mean equal to the sum of the means and the variance equal to sum of the
variances. The converse of above result is also true which states that if the sum of
n independent variables is exactly normal distributed, then each random variable is
normal distributed.

Remark 2.10 1. Let X ∼ N (μ, σ 2), then distribution of Y = X2 is known as
Rayleigh distribution and its PDF is given by

f (y) = 1

σ
√
2πy

exp

(
− y + μ2

2σ 2

)
cosh

μ
√
y

σ 2
, 0 < y < ∞.
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2. A positive random variable X is said to have a lognormal distribution if
Y = loge X has a normal distribution, i.e.,

Y = loge X ∼ N (μ, σ 2).

The PDF of a lognormal distribution is given by

f (x) = 1

xσ
√
2π

e
− 1

2

(
loge x−μ

σ

)2

, 0 < x < ∞ (2.20)

where σ > 0 and−∞ < μ < ∞. Further, E(X) = eμ+ 1
2 σ 2

and
Var(X) = (eσ 2 − 1)e2μ+σ 2

.

Example 2.31 Amanufacturer wishes to give a safe guarantee for his product against
manufacturing defects. He proposes to replace a product if it fails to work any time
within the period of guarantee. He considers that a guarantee period is safe if he
is required to replace not more than 6% of his products that fail within the period
of guarantee. If the lifetime of his product is normal distributed with mean life 2
years and standard deviation 4 months, then what should be the maximum period of
guarantee, in terms of whole months, so that the guarantee is safe for him.

Solution:
Let X be the lifetime of the product and t be the required guarantee time. According
to the problem X ∼ N (2, 1/9). It is required to find such that

P(X ≤ t) = F(t) ≤ 0.06

Φ

(
t − 2

1/3

)
≤ 0.06 � Φ(−1.55)

3(t − 2) = −1.55

t = 1.49 yrs = 17.88 months.

Hence, the manufacturer can give a guarantee of 17 months safely.

Definition 2.26 If the sum of independent random variables following some distri-
bution has the same family of distribution as the individual random variables, then
we say that this family of distribution has reproductive property.

Some of the distributions that have reproductive property are binomial, geometric,
Poisson, normal distribution while exponential distribution and uniform distribution
does not have reproductive property.
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2.5 Central Limit Theorem

The central limit theorem argues that no matter how the distribution of original
variable looks, the distribution of sample mean can be approximated by a normal
distribution provided the sample size is sufficiently large (usually at least 30) and size
of every sample is same. This gives us the ability to measure how the sample means
of different samples will behave, without comparing them to mean of other samples.
As a consequence, samples can be used to answers many questions regarding the
population.

Moreover, CLTdoes not apply only to the samplemean but to someother functions
of the sample as well, for instance, sample proportion. As the knowledge about the
normal distribution is vast, many applications and analysis become easier by using
the central limit theorem, in particular, the two areas called hypothesis testing and
confidence intervals.

Now we present the central limit theorem as follows.

Theorem 2.2 Let X1, X2, . . . , Xn be independent random variables that are identi-
cally distributed and have finite mean μ and variance σ 2. Then, if Sn = X1 + · · · +
Xn (n = 1, 2, . . .), we have

lim
n→∞ P

{
a ≤ Sn − nμ

σ
√
n

≤ b

}
= 1√

2π

∫ b

a
e− u2

2 du.

i.e., the random variable Sn−nμ

σ
√
n

is asymptotically normal distributed.
This theorem is also true under more general conditions. For example, it holds

when X1, X2, . . . , Xn are independent random variables with the same mean and
variance but not necessarily identically distributed.

Example 2.32 A random variable having a Poisson distribution with mean 100 can
be thought of as the sum Y of the observations of a random sample of size 100 from
a Poisson distribution with mean 1. Thus, W = Y−100√

100
has asymptotically normal

distribution.

P(75 ≤ Y ≤ 125) = P

(
75 − 100√

100
≤ Y − 100√

100
≤ 125 − 100√

100

)
.

In general, if Y has a Poisson distribution with mean λ, then the distribution of
W = Y−λ√

λ
is asymptotically N (0, 1) when λ is sufficiently large.

Example 2.33 Let X ∼ χ2
31.Approximate P(χ2

31 ≤ 38.307) usingCLTand compare
with the tabulated value.

Solution:
We know that

E(X) = 31, Var(X) = 62.
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Using CLT, we have

P(X ≤ 38.307) = P

(
X − 31√

62
≤ 38.307 − 31√

62

)
≈ P(Z ≤ 0.92799) = 0.8233.

Using tabulated values, we have

P(χ2 ≤ 38.307) = 0.8282.

The interested readers to know more about probability may refer to Castaneda
et al. (2012), Feller (1968), Rohatgi and Saleh (2015) and Ross (1998).

Problems

2.1 Determine the sample space for each of the following random experiments.

1. A student is selected at random from a probability and statistics lecture class, and
the student’s total marks are determined.

2. A coin is tossed three times, and the sequence of heads and tails is observed.

2.2 One urn contains three red balls, two white balls, and one blue ball. A second
urn contains one red ball, two white balls, and three blue balls:

1. One ball is selected at random from each urn. Describe the sample space.
2. If the balls in two urns are mixed in a single urn and then a sample of three is

drawn, find the probability that all three colors are represented when sampling is
drawn (i) with replacement (ii) without replacement.

2.3 A fair coin is continuously flipped.What is the probability that the first five flips
are (i) H, T, H, T, T (ii) T, H, H, T, H.

2.4 The first generation of a particle is the number of offsprings of a given
particle. The next generation is formed by the offsprings of these members. If
the probability that a particle has k offsprings (split into k parts) is pk where
p0 = 0.4, p1 = 0.3, p2 = 0.3, find the probability that there is no particle in the
second generation. Assume that the particles act independently and identically irre-
spective of the generation.

2.5 A fair die is tossed once. Let A be the event that face 1, 3, or 5 comes up, B be
the event that it is 2, 4, or 6, and C be the event that it is 1 or 6. Show that A and C
are independent. Find P(A, B, or C occurs).

2.6 An urn contains four tickets marked with numbers 112, 121, 211, 222, and one
ticket is drawn at random. Let Ai (i = 1, 2, 3) be the event that i th digit of the number
of the ticket drawn is 1. Discuss the independence of the events A1, A2 and A3.
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2.7 There are two identical boxes containing, respectively, four white and three red
balls; three white and seven red balls. A box is chosen at random, and a ball is drawn
from it. Find the probability that the ball is white. If the ball is white, what is the
probability that it is from the first box?

2.8 Let A and B are two independent events. Show that Ac and Bc are also inde-
pendent events.

2.9 Five percent of patients suffering from a certain disease are selected to undergo
a new treatment that is believed to increase the recovery rate from 30 to 50%. A
person is randomly selected from these patients after the completion of the treatment
and is found to have recovered. What is the probability that the patient received the
new treatment?

2.10 Four records lead away from the country jail. A prisoner has escaped from the
jail. The probability of escaping is 1/6, if road 2 selected, the probability of success is
1/6, if road 3 is selected, the probability of escaping is 1/4, and if road 4 is selected,
the probability of escaping is 9/10.

1. What is the probability that the prisoner will succeed in escaping?
2. If the prisoner succeeds, what is the probability that the prisoner escaped by using

road 4 and by using road 1?

2.11 The probability that an airplane accident which is due to structure failure is
identified correctly is 0.85, and the probability that an airplane accident which is not
due to structure failure is identified as due to structure failure is 0.15. If 30% of all
airplane accidents are due to structure failure, find the probability that an airplane
accident is due to structure failure given that it has been identified to be caused by
structure failure.

2.12 The numbers 1, 2, 3, . . . , n are arranged in random order. Find the probability
that the digits 1, 2, . . . , k (k < n) appear as neighbors in that order.

2.13 In a town of (n + 1) inhabitants, a person tells a rumor to a second person,
who in turn, repeats it to a third person, etc. At each step, the recipient of the rumor
is chosen at random from the n people available. Find the probability that the rumor
will be told r times without returning to the originator.

2.14 A secretary has to send n letters. She writes addresses on n envelopes and
absentmindedly places letters one in each envelope. Find the probability that at least
one letter reaches the correct destination.

2.15 A pond contains red and golden fish. There are 3000 red and 7000 golden fish,
of which 200 and 500, respectively, are tagged. Find the probability that a random
sample of 100 red and 200 golden fish will show 15 and 20 tagged fish, respectively.

2.16 Acoin is tossed four times. Let X denote the number of times a head is followed
immediately by a tail. Find the distribution, mean, and variance of X .
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2.17 In a bombing attack, there is 50% chance that a bomb can strike the target.
Two hits are required to destroy the target completely. How many bombs must be
dropped to give a 99completely destroying the target?

2.18 For what values of α and p does the following function represent a PMF
pX (x) = αpx , x = 0, 1, 2, . . . .

2.19 Let the probability density function of X be given by

f (x) =
{
c(4x − 2x2), 0 < x < 2
0, otherwise

.

1. What is the value of c?
2. What is the distribution of X?
3. P

(
1
2 < X < 3

2

)
?

2.20 A bombing plane flies directly above a railroad track. Assume that if a
larger(small) bomb falls within 40(15) feet of the track, the track will be sufficiently
damaged so that traffic will be disrupted. Let X denote the perpendicular distance
from the track that a bomb falls. Assume that

fX (x) =
{

100−x
5000 , i f x ∈ 0 < x < 100
0, otherwise

.

1. Find the probability that a larger bomb will disrupt traffic.
2. If the plane can carry three large(eight small) bombs and uses all three(eight),

what is the probability that traffic will be disrupted?

2.21 A random variable X has the following PMF

X = x 0 1 2 3 4 5 6 7 8
P(X = x) k 3k 5k 7k 9k 11k 13k 15k 17k

1. Determine the value of k.
2. Find P(X < 4), P(X ≥ 5), P(0 < X < 4).
3. Find the CDF of X .
4. Find the smallest value of x for which P(X ≤ x) = 1/2.

2.22 An urn contains n cards numbered 1, 2, . . . , n. Let X be the least number on
the card obtained when m cards are drawn without replacement from the urn. Find
the probability distribution of random variable X . Compute P(X ≥ 3/2).

2.23 Let X be binomial distributed with n = 25 and p = 0.2. Find expectation,
variance, and P(X < E(X) − 2

√
Var(X)).

2.24 Let X be a Poisson distributed random variable such that P[X = 0] = 0.5.
Find the mean of X .
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2.25 In a uniform distribution, the mean and variance are given by 0.5 and 25
12 ,

respectively. Find the interval on which the probability is uniform distributed.

2.26 Let

FX (x) =
{
0, x < 0
1 − 2e−x + e−2x , x ≥ 0

.

Is FX a distribution function?What type of random variable is X? Find the PMF/PDF
of X?

2.27 Let X be a continuous type random variable with PDF

fX (x) =
{
a + bx2, 0 < x < 1
0 otherwise

If E(X) = 3
5 , find the value of a and b.

2.28 Let X be a random variable with mean μ and variance σ 2. Show that
E[(aX − b)2], as a function of b, is minimized when b = μ.

2.29 Let X and Y be two random variables such that their MGFs exist. Then, prove
the following:

1. If MX (t) = MY (t), ∀t , then X and Y have same distribution.
2. If ΨX (t) = ΨY (t), ∀t , then X and Y have same distribution.

2.30 Let Ω = [0, 1]. Define X : Ω → R by

X (w) =
{
w, 0 ≤ w ≤ 1/2
w − 1/2, 1/2 ≤ w ≤ 1

.

For any interval I ⊆ [0, 1], let P(I ) =
∫
I
2xdx . Determine the distribution function

of X and use this to find P(X > 1/2), P(1/4 < X < 1/2), P(X < 1/2/X > 1/4).

2.31 A random number is chosen from the interval [0, 1] by a random mechanism.
What is the probability that (i) its first decimal will be 3 (ii) its second decimal will
be 3 (iii) its first two decimal will be 3’s?

2.32 Prove that, the random variable X has exponential distribution and satisfies a
memoryless property or Markov property which is given as

P(X > x + s/X > s) = P(X > x) x, s ∈ R
+. (2.21)

2.33 Suppose that diameters of a shaft s manufactured by a certain machine are
normal random variables with mean 10 and s.d. 0.1. If for a given application the
shaft must meet the requirement that its diameter falls between 9.9 and 10.2cm.
What proportion of shafts made by this machine will meet the requirement?
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2.34 A machine automatically packs a chemical fertilizer in polythene packets.
It is observed that 10% of the packets weigh less than 2.42kg while 15% of the
packets weigh more than 2.50kg. Assuming that the weight of the packet is normal
distributed, find the mean and variance of the packet.

2.35 Show that the PGF’s of the geometric, negative binomial and Poisson distri-
bution exists and hence calculate them.

2.36 Verify that the normal distribution, geometric distribution, and Poisson dis-
tribution have reproductive property, but the uniform distribution and exponential
distributions do not.

2.37 Let Y ∼ N (μ, σ 2) where μ ∈ R and σ 2 < ∞. Let X be another random
variable such that X = eY . Find the distribution function of X . Also, verify that
E(log(X)) = μ and Var(log(X)) = σ 2.

2.38 Let X ∼ B(n, p). Use the CLT to find n such that: P[X > n/2] ≤ 1 − α.
Calculate the value of n when α = 0.90 and p = 0.45.

2.39 Suppose that the number of customers who visit SBI, IIT Delhi on a Saturday
is a randomvariablewithμ = 75 and σ = 5. Find the lower bound for the probability
that there will be more than 50 but fewer than 100 customers in the bank?

2.40 Does the random variable X exist for which

P [μ − 2σ ≤ X ≤ μ + 2σ ] = 0.6.

2.41 Suppose that the life length of an item is exponentially distributed with param-
eter 0.5. Assume that ten such items are installed successively so that the i th item is
installed immediately after the (i − 1)th item has failed. Let Ti be the time to failure
of the i th item i = 1, 2, . . . , 10 and is always measured from the time of installation.
Let S denote the total time of functioning of the 10 items. Assuming that T ′

i s are
independent, evaluate P(S ≥ 15.5).

2.42 A certain industrial process yields a large number of steel cylinders whose
lengths are distributed normal with mean 3.25 inches and standard deviation 0.05
inches. If two such cylinders are chosen at random and placed end to end what is the
probability that their combined length is less than 6.60 inches?

2.43 A complex system is made of 100 components functioning independently. The
probability that any one component will fail during the period of operation is equal
to 0.10. For the entire system to function at least 85 of the components must be
working. Compute the approximate probability of this.

2.44 Suppose that Xi , i = 1, 2, . . . , 450 are independent random variables, each
having a distribution N (0, 1). Evaluate P(X2

1 + X2
2 + · · · + X2

450 > 495) approxi-
mately.
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2.45 Suppose that Xi , i = 1, 2, . . . , 20 are independent randomvariables, each hav-
ing a geometric distribution with parameter 0.8. Let S = X1 + · · · + X20. Use the
central limit theorem P(X ≥ 18).

2.46 A computer is adding number, rounds each number off to the nearest integer.
Suppose that all rounding errors are independent and uniform distributed over (−0.5,
0.5).
(a) If 1500 numbers are added, what is the probability that the magnitude of the total
error exceeds 15?
(b) How many numbers may be added together so that the magnitude of the total
error is less than 10 with probability 0.90?

2.47 Let X ∼ B(n, p). UseCLT to find n such that P[X > n/2] ≥ 1 − α.Calculate
the value of n, when α = 0.90 and p = 0.45.

2.48 A box contains a collection of IBM cards corresponding to the workers from
some branch of industry. Of the workers, 20% are minors and 30% adults. We select
an IBMcard in a randomway andmark the age given on this card.Before choosing the
next card, we return the first one to the box. We observe n cards in this manner. What
value should n have so that the probability that the frequency of cards corresponding
to minors lies between 0.10 and 0.22 is 0.95?.

2.49 Items are produced in such a manner that the probability of an item being
defective is p (assume unknown). A large number of items say n are classified as
defective or nondefective. How large should n be so that we may be 99% sure that
the relative frequency of defective differs from p by less than 0.05?

2.50 Aperson puts some rupee coins into a piggybank each day. The number of coins
added on any given day is equally likely to be 1, 2, 3, 4, 5 or 6 and is independent
from day to day. Find an approximate probability that it takes at least 80 days to
collect 300 rupees?

2.51 Suppose that 30 electronic devices say D1, D2, . . . , D30 are used in the follow-
ing manner. As soon as D1 fails, D2 becomes operative. When D2 fails, D3 becomes
operative, etc. Assume that the time to failure of Di is an exponentially distributed
random variable with parameter = 0.1 (h)−1. Let T be the total time of operation of
the 30 devices. What is the probability that T exceeds 350h?

2.52 Suppose that Xi , i = 1, 2, . . . , 30 are independent random variables each
having a Poisson distribution with parameter 0.01. Let S = X1 + X2 + · · · + X30.
(a) Using central limit theorem evaluate P(S ≥ 3).
(b) Compare the answer in (a) with exact value of this probability.

2.53 Use CLT to show that

lim
n→∞ e−nt

n∑
k=0

(nt)k

k! = 1 =
⎧⎨
⎩
1, 0 < t < 1
0.5, t = 1
0, t > 1

.
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2.54 Consider polling of n voters and record the fraction Sn of those polled who are
in favor of a particular candidate. If p is the fraction of the entire voter population that
supports this candidate, then Sn = X1+X2+···+Xn

n , where Xi are independent Bernoulli
distributed random variables with parameter p. Howmany voters should be sampled
so that we wish our estimate Sn to be within 0.01 of p with probability at least 0.95?

2.55 Let X1, X2, . . . be a sequence of independent and identically distributed ran-
dom variables with mean 1 and variance 1600, and assume that these variables are

nonnegative. Let Y =
100∑
k=1

Xk . Use the central limit theorem to approximate the prob-

ability P(Y ≥ 900).

2.56 If you wish to estimate the proportion of engineers and scientists who have
studied probability theory and you wish your estimate to be correct within 2% with
probability 0.95, how large a sample should you take when you feel confident that
the true proportion is less than 0.2?
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Chapter 3
Descriptive Statistics

3.1 Introduction

Statistics is an art of learning from data. One of the tasks to be performed after
collecting data from any observed situation, phenomena, or interested variable is to
analyze that data to extract some useful information. Statistical analysis is one of
the most applied tools in the industry, decision making, planning, public policy, etc.
Many practical applications start from analyzing data, which is the main information
source. Given this data, the analyst should be able to use this data to have an idea of
what the collected data have to say, either by providing a report of his/her findings
or making decisions.

The first step after having data is to make it useful, which is possible if we can
extract some useful information from that data. The obtained information is then
used to describe the observed phenomena and its behavior. After having described
the phenomena, the analyst can infer some characteristics, using appropriate tools.
And finally, after inferring the main characteristics of the phenomena, it is possible
to model observed trends, behaviors, unusual observations, etc.

For example, the government may want to get some idea about the income of its
population to make economic decisions. The first step will be to collect as much data
as possible across different classes and age groups. Now, this data will be processed
to get meaningful information, e.g., mean, standard deviation, etc. After calculating
different quantities, government can make inferences, e.g., the average income of
30–40years age group is more than 10–20years age group. Also, the government
can use this data to model the income of middle-class population or classify a person
as middle-class depending on other factors.

This chapter is intended to provide some tools for performing basic descriptive
statistical analysis of data. Furthermore, some tools and examples are designed to
introduce the reader to advanced statistical concepts, such as inference andmodeling.
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3.2 Data, Information, and Description

Data are a collection of unrefined facts and figures that do not have any added
interpretation or analysis, whereas information is processed data that is meaningful
to the user. Statistics is an art of learning from the data. Applicability and usefulness
of statistics are almost unlimited, as most of the natural phenomena have a random
behavior. This way, the analysis, description, and inference about data become a very
important part of modern life, even in minor aspects of daily life such as buying stuff
or going to work.

Now, an observed data are a measurement of a variable, in a given state. For
instance, the height of a person (at a particular point of his life), the weight of a
package, the pressure of a riveting machine, etc., are the observed data. Note that if
we take similar observational units (a.k.a individuals) coming from a homogeneous
group, there is a chance of having different measurements and we are not really sure
of the exact reasons for those differences between measurements. These differences
generally account for variation within a population or variations due to time.

It is important to introduce the concept of samples and populations. A population
is the set of all observational units thatwe can analyze, and a sample is a representative
subset of a population (which should be easy to access and measure). Thus, the size
of the population, called the population size, denoted by N can be finite or infinite.
Similarly, the number of units in a sample is called the sample size. It is usually
denoted by n and is generally considered to be a finite number. The domain of the
measured data is denoted by� so that themeasurements collected over the population
should be defined over � as well. In the next example, we explain these concepts.

For example, suppose we want to draw some conclusion about the weights of
8,000 students (the population) by examining only 200 students selected from this
population. Here, N = 8, 000 and n = 200. Another example is to conclude the
whether a particular coin is fair or not by repeatedly tossing it. All the possible
outcomes of the tosses of the coin form the population. A sample can be obtained
by examining, say, the first 100 tosses of the coin and notify the percentage of heads
and tails. Here N is infinite and n = 100.

Example 3.1 The national army of a country is composed of 1,500 officers, in differ-
ent confinements and bases. The commanders of the army have selected a sample of
20 officers for whom four variables were measured: height (in m), marital status (0=
single, 1=married), education level (0= high school, 1= technician, 2= graduate,
3 = postgraduate, 4 = Ph.D.), and weight (in kg). The observed data are given in
Table3.1. The commanders want to infer certain information from the observed data
to plan future supplies for their officers and duties to be assigned based on the skills
of their officers. To do this, the provided data should be analyzed.

In this case, the addressed population size is N = 1500 officers, the sample size
is n = 20 officers (observational units), and the domains for all the variables are:
�1 = [a, b], a < b, a, b ∈ R

+, �2 = {0, 1}, �3 = {0, 1, 2, 3, 4}, and �4 = [a, b],
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Table 3.1 Observed data for
Example3.1

Officer Height
(m)

M.S. E.L. Weight
(kg)

1 1.76 0 2 83.1

2 1.83 1 2 91.8

3 1.79 1 3 91.3

4 1.71 1 2 85.6

5 1.81 0 0 88.0

6 1.71 0 2 89.2

7 1.96 1 2 92.8

8 1.80 0 2 89.1

9 2.10 0 3 90.8

10 1.89 0 1 87.0

11 2.13 0 3 90.2

12 1.82 0 3 85.9

13 2.07 1 3 93.2

14 1.73 0 2 89.6

15 1.72 1 2 89.1

16 1.86 0 4 90.5

17 1.82 1 2 87.1

18 1.94 1 3 88.5

19 1.74 1 4 89.9

20 1.99 1 2 88.3

a < b, a, b ∈ R
+. Note that there are some differences among variables, since vari-

ables 1 and 4 have continuous domains, unlike variables 2 and 3 whose domains are
discrete.

3.2.1 Types of Data

In statistical analysis, there are different kinds of data, whose values are closely
related to the nature of the variables. There are two main types of data that are
mostly observed in practical applications which further are of different types:

Categorical Data: It is also described as qualitative data. This data arise when
the observations fall into separate distinct categories. Such data are inherently
discrete, i.e., there are finite number of possible categories into which each obser-
vation may fall. Categorical data can further be classified as

Nominal Data: It is a variable whose measurement indicates a category or
characteristic, more than an exact mathematical measure. In nominal variables,
there is not a clear order among categories, and so a nominal variable is just a
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label of a characteristic of the observational unit without a rating scale (order).
For example gender, eye color, religion, brand.

Ordinal Data: It is a variable whose measurement indicates a clear ordered
category or characteristic. In ordinal variables, there is a clear order among
categories. So an ordinal variable points out a characteristic of an observational
unit that can be ranked regarding a rating scale. For example, a student’s grades
such as (A, B, C), clothing size (small, medium, large).

Numerical Data: This kind of data, also known as quantitative data, arise when
the observations are counts or measurements. For example, the quantities such as
number of students in the class, weight of an individual, temperature at a particular
place, etc. The numerical data can further be of two types.

Discrete Data: The domain of discrete data is integers. For example, number
of houses in a society, number of chapters in a book, etc.

Continuous Data: The domain of a continuous variable is � ∈ (−∞,∞) or
[a, b] or some interval on real line. Continuous domains are lattices and are
clearly well ordered.

As seen in Example3.1, we have the variables 1 and 4 are numerical data in particular
continuous data. Variable 2 can be considered as an ordinal data since there is a clear
consensus that single is better and married is worse. Variable 3 is an ordinal data
since it is clear that postgraduate skills are better than high school skills, so category
1 implies to be better than 0, 2 is better than 1, and so on. In conclusion, the above
classification of data is shown in Fig. 3.1.

Fig. 3.1 Types of data
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3.2.2 Data, Information, and Statistic

Based on the knowledge of nature of variables, we can establish some concepts
before analyzing data. These concepts are Data, Information, and Statistic.

Data: These are the observed values of a variable, at a specific observa-
tional unit.

Information: Information, retrieved from the data, is a logical interpretation
and/or statement which can be observed from the data.

Statistic: It is a fully computable quantitywhich can be obtained from the data
(usually defined by a mathematical function). A statistic is based
on logical reasoning, e.g., mean gives the average, and standard
deviation gives a measure of variation in the sample.

This leads us to think that data are just measurements collected over observational
unitswhich can provide information to the analyst through statistics.More formally:

In simple words, a statistic is a function which takes values observed in a sample
as input and gives a number with somemeaning/information about the data as output.
For example, mean is a statistic which takes all values of the sample as input and
gives a number (mean of the sample) as output. This number gives an estimate of the
population mean.

Example 3.2 (Example3.1 Continued) Let us go back to Example3.1. Denote every
variable as Xi and the observed data as xi j where i means the observational unit, and
j means themeasured variable. Let be Tj = maxi (xi j )∀ j ∈ {1, 2, 3, 4}, the question
is: Is Tj a statistic? To do so, we compute Tj , as follows:

T1 = 2.13 T2 = 1 T3 = 4 T4 = 93.24.

The answer is Yes, Tj is a statistic of all X j variables.

Now consider Tj =
∑

i

(ln(xi j ))∀ j ∈ {1, 2, 3, 4}, is Tj a statistic?

The answer is No, since ln(xi j ) is not computable for variables 2 and 3.

3.2.3 Frequency Tables

One aim of analyzing data is to categorize it into classes and then visualize its
behavior. The idea is to divide the sample into well-defined subsets (classes) as a
function of its domain and see how many data items are in each class. This analysis
is called frequency table approach. A frequency table records how often each value
(or a set of values) of the variable in question occurs, no matter if some events are
not present in the sample, since the main idea is to aggregate data samples.

A frequency table is used to summarize nominal, ordinal, and continuous data,
once the data set has been divided up into sensible groups. In nominal and ordinal
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data, classes are defined by their own labels, and in continuous data, classes should
be defined by the observed domain of the data set, called its Range, where the range
has to be divided into subsets to classify the data. The range of a continuous variable
X j namely R j is defined as follows:

R j = max
i

(xi j ) − min
i

(xi j ).

R j is divided into an appropriate number (k) of classes C j,k . Then the Frequency
f j,k of each class is calculated by counting the data included in each class. An easy
way to obtain classes and their widths are given below:

1. Compute the Range R j .
2. Select the desired number of classes desired denoted by k. Usually, k is selected

between 5 and 20.
3. Compute the class widthwk by dividing R j by the number of classes and rounding

up (not rounding off). If it is an integer, then you have two options: either increase
the number of classes or the class width by one.

4. Select a starting point less than or equal to mini (xi j ). It is mandatory to cover all
the range, so we have that k × wk > R j which leads to cover one more value than
the range. Now set the starting point as the lower limit of the first class. Continue
to add the class width to this lower limit to get the rest of the lower limits. These
are called the Limits of the class.

5. The upper limit of the first class is located by subtracting one unit from the lower
limit of the second class. Continue adding wk to this upper limit to find all upper
limits.

6. Define the Real limits of a class by subtracting 0.5 units and adding 0.5 units from
the lower limits and to the upper limits, respectively.

7. Find the frequencies f j,k .

Remark 3.1 When we have more than one categorical variable in a sample, a fre-
quency table is often called a contingency table since there is a row data dependence
upon column data.

Contingency table is a display format used to analyze and record the relationship
between two or more categorical variables. These are constructed by noting all levels
of one variable as rows and levels of another variable as a column and finding a joint
frequency.

Consider an example as shown in Table3.2. let Male = M = 0 and Female =
F = 1. Let diseased Yes = Y = 0 and No = N = 1. The data observed for a sample
of three people. The corresponding contingency table is shown in Table3.3.

Another interesting statistic is called the Relative frequency of C j,k , namely
R f j,k , which is simply the ratio of number of data points present in C j,k to the total
number of observations n which is defined as follows:

R f j,k = f j,k
n

.
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Table 3.2 Observed data Diseased Gender

1st person 0 1

2nd person 1 1

3rd person 0 1

Table 3.3 Contingency table Gender

Disease Male Female Marginal
total

Yes 0 2 2

No 1 0 1

Marginal total 1 2 Sum total 3

The information provided by the frequency and relative frequency of a class
indicates as to how often a subgroup of data is present in a sample. In most cases,
R f j,k shows the most and least frequent classes which reveal the most and least
probable values of the sample (and the values within).
Cumulative Relative Frequency C f j,k is another statistic which can be found by
summing up the frequencies of the k < k ′ classes, where k ′ is the desired class. It
can be represented as follows:

C f j,k ′ =
k ′∑

k=1

R f j,k .

The cumulative frequency table provides information about how many data items
belong to a particular class, which is useful to determine how the sample is spread
and where the major amount of data is located.

Example 3.3 (Example3.1 continued) Recalling the information of the variable 4 in
Example3.1, we can see that R j = maxi (xi j ) − mini (xi j ) → 93.2 − 83.1 = 10.1.
The obtained results are shown in Table3.4.

Table 3.4 Frequency table for Example3.1

Class Limits Actual limits f j,k R f j,k C f j,k

1 (83.1–85.11) (83.095–85.115) 1 0.05 0.05

2 (85.12–87.13) (85.115–87.135) 4 0.2 0.25

3 (87.14–89.15) (87.135–89.155) 5 0.25 0.5

4 (89.16–91.17) (89.155–91.175) 6 0.3 0.8

5 (91.18–93.2) (91.175–93.205) 4 0.2 1

Total 20 1
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Table3.4 shows all 5 classes, their limits and real limits, their frequencies f j,k ,
relative frequencies R f j,k , and cumulative frequencies as well. Note that the fourth
class is the most frequent class (89.16–91.17), while first class is the least frequent.
This means that most of the officers weigh around (89.16–91.17)kg and the less
popular weight is around (83.1–85.11)kg. Also note that at least 80% of the officers
weigh less than 91.175kg, and at least 75% of the officers weighmore than 87.135kg
(1-C f4,2).

3.2.4 Graphical Representations of Data

Frequency tables are indeed useful tool to represent the data; however, they have
their own limitations. Thus, in situations where we have large amounts of data,
representing the data using graphical methods is often clearer to understand and is
a comprehensive way to understand and visualize the behavior of the data. Most
of the analysts request for graphs to understand some of the statistics computed
from samples and so there is a need for presenting results in a clear way. In next
subsections, some useful graphical representations are introduced.

Bar Chart

Bar charts provide a clear and commonly used method of presenting un-grouped
discrete frequency observations or any categorical data. Bar charts provide a simple
method of quickly spotting simple patterns of popularity within a discrete data set.
In bar chart, rectangular blocks of equal width are plotted on the x-axis, each rep-
resenting independent variable placed at equal distance from each other. The height
of each block represents the frequency of the categories and is proportional to the
number of percentage in each category. Because each bar represents a completely
separate category, the bars must not touch each other, i.e., always leave a gap between
the categories. The bar diagrams are drawn through columns of equal width. The bar
diagram is also called a columnar diagram. The steps to create a bar chart are the
following:

1. Put the data into a frequency table.
2. Decide the data to be represented on each of the axes of the chart. Conventionally,

the frequency is represented on the y-axis (i.e., vertical axis) and the data which
is being measured is on the x-axis (i.e., horizontal axis).

3. Decide the scale for the y-axis or the frequency axiswhich represent the frequency
in each category on the x-axis by its height. Label this axis with suitable number
scale.

5. Draw both the axes and appropriately label them.
6. Draw a bar for each category. While drawing the bars, one must ensure that each

bar is of same width and there are equally sized gaps in between the bars.

For example, variable 3 (education level) in our example can be represented by bar
chart as shown in Fig. 3.2.
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Fig. 3.2 Bar chart

Weight between 83 and 86 : 15%

Weight greater than 90: 45%

Weight between 87 and 90 : 40%

Fig. 3.3 Pie chart graph

Pie Chart

A pie chart is used to represent the relative frequencies for a non-numerical data i.e.,
it is only applicable for categorical data or grouped data. A pie chart presents the
categories of data as parts of a circle or “slices of a pie.” They are used to show the
proportions of a whole and are useful when there are small number of categories
to display. The underlying concept is to construct a circle and then slice it into
different sectors, one for each category. The area of each sector being equal to the
product of total area of circle with the relative frequency of the category that sector
is representing, i.e.,

angle = Frequency of the category

Total number in sample
× 100.

For example, Fig. 3.3 shows the pie chart for the data of Table3.1.
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Frequency Histogram and Dot-Plot

In case of continuous data grouped into classes, a histogram is constructed for graph-
ical representation of data. A histogram is a vertical bar chart drawn over a set
of class intervals that cover the range of observed data. Before drawing a histogram,
organize the data into a frequency distribution table, as we do in case of grouped
data. The class intervals should be formed with class boundaries since histograms
are prepared for continuous data. Thus, the upper boundary of a class interval will
be the same with the lower boundary of the subsequent class interval. Then, for each
class, a rectangle is constructed with a base length equal to its class width and height
is equal to the observed frequency in the class. Usually, the rectangles do not have
an equal length.

It is often used in descriptive data analysis to visualize the major features of the
distribution of the data in a convenient form. A histogram can give the following
information about the data (a) the shape of the distribution, (b) the typical values of
the distribution, the spread of the distribution, (c) and the percentage of distribution
falling within a specified range of values.

A histogram can also help detect any unusual observations (outliers), most and
least frequent classes, or any gaps in the sample. When having nongrouped discrete
data, the histogram cannot be constructed. In that case, the most recommended graph
is called Dot-plot graph, which draws the frequency of each category of the sample
using points and lines instead of classes and rectangles. A dot-plot graph of the data
can be presented in a frequency table.

Most of the information provided by a histogram or dot-plot regards to the most
and least frequent values, the range of the sample and possible unusual behaviors
in samples. Next example illustrates the main idea of drawing a histogram and a
dot-plot.

Fig. 3.4 Frequency
histogram for Variable4
(weight)
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Fig. 3.5 Dot-plot graph for
Variable3 (education level)

1 2 3 4
Classes (Categories)

Example 3.4 (Example3.1 continued) In our example, we want to draw the his-
togram of the variable 4, for which we computed the frequencies. The results are
shown in Fig. 3.4.
Figure3.4 shows that the most frequent class is fourth class (89.16–91.17)kg. This
means that the commanders of the army should plan the supplies for their officers
keeping in mind that most of them weigh (87.14–89.15)kg and only a few of them
weigh (83.1–85.11)kg.

Now, the variable 3 (education level) can be plotted using a dot-plot to display its
frequencies, shown as follows.

Figure3.5 shows a dot-plot where we can see that the category 2 (graduate) is
the most prevalent among officers, and only a few of them have only high school
education level. Also note that most of the officers have at least graduate degree, so
the commanders have a well-trained body of officers.

Many of the large data sets observed in practice have histograms that are similar
in shape which often reach their peaks at the sample mean and then decrease on both
sides of this peak in a bell-shaped symmetric fashion. Such histograms are known
as normal histograms, and such data sets are called normal. Figure3.6 shows normal
histograms.
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Fig. 3.6 Normal histograms
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Fig. 3.7 Skewed histograms
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Fig. 3.8 Frequency polygon

The data set for which histogram is not even approximately symmetric about its
sample mean is said to be skewed data. It is called “skewed to the right” if its right
tail is longer as compared to its left tail and “skewed to the left” if it has a longer left
tail. Figure3.7 shows skewed to the right.

Frequency Polygon

Frequency polygon is another way to represent the data in a frequency table. Fre-
quency polygon plots the frequencies on the y-axis (i.e., vertical axis) against dif-
ferent data values on the horizontal axis and then connects the plotted points with
straight lines. Figure3.8 represents a frequency polygon for the data of Table3.1.

Box Plot

This is the most commonly used graphical statistics used to estimate the distribution
of quantitative data of a population. Box plot is defined as a graphical statistic that can
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Fig. 3.9 Box plot for Variable4 (Weight)

be used to summarize the observed sample data and can provide useful information
on the shape and the tail of the distribution. This is also called as box and whisker
plot.

A box plot is based on five number summary associated with the data: (a) the
minimum value, (b) the maximum value, (c) the first quartile (Q1) value, (d) the
second quartile (Q2) value or the median, and (e) the third quartile (Q3) value. From
the box plot, one can get an idea of interquartile range from the length of the box.
The larger the size of the box, greater is the range. The length of line from Q1 to the
lowest value and from Q3 to the highest value gives an idea of the spread of the data
beyond Q3 and below Q1, respectively. Also, one can infer one can infer about the
tails of the distribution or the extreme values, the typical values in the distribution
(minimum, maximum, median).

For example, we want to draw the box plot of the variable 4. The results are shown
in Fig. 3.9. We can observe the long tail or whisker to the below of Q1 that indicates
the spread of data is more below Q1. Similarly, median is around 91kg, Q1 is around
87.5 and Q3 is around 90.5.

Cumulative Frequency Graph

A Cumulative frequency graph displays the behavior of the cumulative frequencies
of a sample in an increasing fashion. This graph starts from zero (0) and ends at one
(1), since the cumulative sum of all frequencies shall not be more than one (which
is equivalent to the 100% of data).

Ogives

The partition values, namely quartiles, deciles, and percentiles can be conveniently
located with the help of a curve called the “cumulative frequency graph” or “Ogive.”
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Fig. 3.10 Cumulative
frequency graph for
Variable4 (weight)
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Example 3.5 (Example3.1 Continued) Now, the commanders give special attention
to the weight of their officers so that they can see how the sample’s frequency is
increasing. To do so, Fig. 3.10 shows the cumulative frequency graph for the weight
of the officers. This curve is called less than cumulative frequency curve or less than
Ogive.

Note that the behavior of the frequency is increasing from 83.1 to 93.2kg, and
its behavior is very well distributed (which means that there are no sudden changes
among classes).

The commanders have realized that 80% of their officers weigh less than 91.18kg,
and just a 25% of them weigh less than 87.14kg. This is equivalent to saying that the
commanders used the first quartile to determine where the 25% of the officers are,
and the eighth quantile to determine where the 80% of the officers are. Figure3.11
shows where q0.25 and q0.8 are.

Fig. 3.11 Quantiles for
Variable4 (weight)
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Fig. 3.12 More than ogive for Variable4 (weight)

Other interesting analysis can be performed: 55% of the officers weigh between
87.14 and 91.18kg. This means that more than half of the officers weigh between
87.14 and 91.18kg, which would be a reference weight for planning supplies.

There are two types of Ogives: more than type ogive and less than type ogive.
Figure3.12 shows more than type ogive of weights. Similarly, less than ogive for
weights is shown in Fig. 3.13.

The x-coordinate of the point of intersection of less than ogive and more than
ogive gives the median of data. This is shown in Fig. 3.14.

We often come across the data sets having paired variables, related to each other
in some way. A useful way of representing a data with paired values (xi , yi ), i =
1, 2, . . . , n is to plot the data on a two-dimensional graph with x values being rep-
resenting on the x-axis and the y values on the y-axis. Such a plot is known as a
scatter diagram. For example, Fig. 3.15 shows the scatter diagram for the data in
Example3.1.

3.3 Descriptive Measures

Sometimes, the analyst requires a single measure to make a decision or has an idea
about the behavior of the sample. A natural thought is how to answer the following
questions: What is the average of the sample? how much variation is there in the
sample?
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Fig. 3.13 Less than ogive for Variable4 (weight)
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Fig. 3.14 Median using Ogives

In the theory of statistics, these questions are answered by themeasures ofCentral
tendency and Variability of a sample. The most useful statistics to answer these
questions are the mean and variance, defined in the next section. The measures that
we are defining in the following subsections are for sample.
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Fig. 3.15 Scatter diagram

3.3.1 Central Tendency Measures

Central tendency is a concept closely related to what is expected in a sample, its
most frequent value, or their average behavior. A central tendency measure give us
an idea of how a data sample has been grouped around a value. Some important
central tendency measures are the Mean, Median, Mode, and the Geometric mean,
which are defined as follows:

Definition 3.1 (Mean) The mean of a sample composed of observations
x1, x2, . . . , xn is its arithmetic mean, denoted by x

x =

n∑

i=1

xi

n
. (3.1)

The mean is an appropriate measure in most cases. However, as it involves all data
samples, extreme values (a.k.a as outliers) can affect its value. Note that the mean
of any variable has the same units as the variable. Sum of deviation of a set of n
observations x1, x2, . . . , xn from their mean x is zero, i.e.,

n∑

i=1

(xi − x) = 0.

For a discrete data, if the observations x1, x2, . . . , xn occur with the frequencies
f1, f2, . . . , fn , respectively, and di = xi − A, the deviation from a number A, then
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Table 3.5 Sample means for
Example3.1

Variable Height (m) Weight (kg)

Mean 1.859 89.05

x = A + 1

N

n∑

i=1

fi di

where
n∑

i=1

fi = N . For a continuous data, if all the k class intervals had same width h

and di = xi − A, where xi is the class mid point of the i th class interval, then define
Now,

x = A + h

N

n∑

i=1

fi ui

where
n∑

i=1

fi = N .

Example 3.6 (Example3.1 Continued) The commanders of the army want to know
the average value of the data samples provided, to have an idea about the main char-
acteristics of their officers. For instance, the mean height of the officers is computed
as follows

xheight = (1.76 + 1.83 + · · · + 1.74 + 1.99)m/20 = 1.859m.

And the mean of variables 1 and 4 is shown in Table3.5.
Now, the commanders can see that the average height of their officers is 1.859m

and their average weight is 89.05kg. These are useful information for planning
supplies in the future, assuming the averagevalues shouldbe suppliedmore efficiently
than extreme values.

Definition 3.2 (Median) The median of an ordered sample x1 � x2 � · · · � xn is
the value, namely (med(x)) for which a half of the observations are less than this
value, and the other half are greater than this value.

If the sample size n is odd, then the value in the middle of the ordered sample
is its median. If n is even, then the arithmetic mean of the two central values is its
median.

For a grouped data, median is given by

med(x) = Lm + h

(
N/2 − C

fm

)
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Table 3.6 Sample medians
for Example3.1

Variable Height (m) Weight (kg)

Median 1.82 89.15

where

N = total frequency =
n∑

i=1

fi

n = number of classes

fm = frequency of the class where the median lies

Lm = lower class boundary of the class where median lies

C = cumulative frequency of class below the class where the median lies

h = width of the class interval.

Example 3.7 (Example3.1 Continued) The commanders wish to know the median
height of their officers to see if the officer’s height show any kind of symmetry.

For instance, the median of the variable height is computed from the ordered
sample, as follows:

(1.71, 1.71, . . . , 1.82, 1.82, . . . , 2.1, 2.13)

→ med(xheight ) = (1.82 + 1.82)/2 = 1.82.

The median of variables 1 and 4 is summarized in Table3.6.
As the medians are close to the means of those variables, the commanders can

see that the officers have a symmetric behavior, since half of their officers are less
than its average in those variables.

Definition 3.3 (Quantiles, Percentiles, and Quartiles)

Quantiles

Particularly in a frequency graph, it is possible to locate interesting points known as
Quantiles. A Quantile q is a value below which a specific proportion of the sample
(or population) is located. Quantiles are regular intervals taken from the cumulative
frequency graph of a random variable. It can be obtained by dividing ordered data
into k essentially equal-sized proportions. Quantiles are the measures that divide
the observations into equal parts provided that the data values are arranged in an
ascending order).

Percentile: The K th percentile of an ordered sample x1 ≤ x2 ≤ · · · ≤ xn is a quantity
such that at least K% of the data values are less than or equal to and at least (100-K )
% of the data values are greater than or equal to it.

Quartiles: The quartiles of an ordered sample x1 ≤ x2 ≤ · · · ≤ xn divide the data
into four equal parts. The lower or first quartile Q1 is the quantity such that at least
25% of the observations are less than or equal to it, and 75% are greater than or equal
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to it. The upper or third quartile is the quantity such that 75% of the observations are
less than or equal to it, and 25% are greater than or equal to it. The middle or second
quartile Q2 is nothing but the median, which divides data into two equal parts.

Summarizing these quantities, we have Median: Divide the data into two equal
parts,

Quartiles: Divide the data into four equal parts,

Deciles: Divide the data into 10 equal parts,

Percentiles: Divide the data into 100 equal parts.

For a given un-grouped data,we compute three quartilesq1,q2, andq3, thatwill divide
the observations into four equal parts. We have q1 is located at n+1

4 and 25% of all
observations lie below q1. Similarly, q2 is located at n+1

2 and 50% of all observations
lie below q2. q3 is located at

3(n+1)
4 and 75% of all observations lie below q3 provided

that the data have been arranged in ascending order.
The range between the first and third quartiles is known as interquartile range

(IQR) and is given by

I QR = Q3 − Q1.

Interquartile range helps us to locate the middle 50% of the total observations. Sim-
ilarly, the quartile deviation (q.d.) is given by

q.d. = I QR

2
= (q3 − q1)

2

and it can be used as a measure of dispersion in the middle half of distribution.
Quartile deviation is useful when the data contain outliers.

Similarly, there are nine quantities known as deciles d1, d2, . . . , d9 that divide the
data into ten equal parts. Thus, 10% of the data lies below d1, 20% of the data lies
below d2, and so on provided the data are arrange in ascending order. The deciles
can be calculated as follows for an un-grouped data.

di is located at
i(n + 1)

10
, i = 1, . . . , 9.

For instance, after arranging data in ascending order, d4 occupies the position 4
10 (n +

1). Finally, there are 99 quantities called percentiles p1, p2, . . . , p99 that divide the
data into 100 equal parts. Here, 1% of the data lies below p1, 2% of the data lies
below p2, and so on provided the data are arranged in ascending order. Percentiles
can be calculated as follows for an un-grouped data.

pi is located at
i(n + 1)

100
, i = 1, . . . , 99,

with, say, p30 found at 30
100 (n + 1).
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Example 3.8 Consider the height of the officers given in Table2.1 Upon arranging
them in increasing order, we have 1.71, 1.71, 1.72, 1.73, 1.74, 1.76, 1.79, 1.80, 1.81,
1.82, 1.83, 1.86, 1.89, 1.9, 1.94, 1.96, 1.99, 2.07, 2.10, 2.13, we can easily determine
that:

1. q1 is located at the position 20+1
4 = 21

4 = 5.25, i.e., q1 is 1
4 of the distance between

the fifth and sixth data points. Hence, q1 = 1.745.
2. Similarly, d2 is located at the position 2(20+1)

10 = 4.2 or d2, i.e., d2 is 1
5 of the

distance between the fourth and fifth data points. Hence, d2 = 1.732.
3. Also, p40 is located at the position 40(20+1)

100 = 8.4 or p40, i.e., p40 is 2
5 of the

distance between the eighth and ninth data points. Hence, p40 = 1.804.

Similar to the formula for median, for a grouped data, the i th percentile for a grouped
data is given by

pi = Lm + h

(
i N/100 − C

fm

)
, i = 1, 2, . . . , 99

and that for j th quartile is given by

Q j = Lm + h

(
j N/4 − C

fm

)
, j = 1, 2, 3

where

N = total frequency =
n∑

i=1

fi

n = number of classes

fm = frequency of the class where the percentile or quartile lies

Lm = lower class boundary of the class where percentile or quartile lies

C = cumulative frequency of class below the class where the percentile or quartile lies

h = width of the class interval.

The percentiles and quartiles are computed as follows:

1. The fi -value, i.e., frequency of the i th class in the data table is computed:

fi = i − 1

n − 1

where n the number of values.
2. The first quartile is obtained by interpolation between the f -values immediately

below and above 0.25, to arrive at the value corresponding to the f -value 0.25.
3. The third quartile is obtained by interpolation between the f -values immediately

below and above 0.75, to arrive at the value corresponding to the f -value 0.75.
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Definition 3.4 (Mode) The mode of a sample x1, x2, . . . , xn is its most frequent
value, namely modal value (mode(x)).

mode(x) = l +
(

fs
f p + fs

× h

)

where

l = lower limit of modal class

fs = frequency in the class succeeding modal class

f p = frequency in the class preceding modal class

h = width of class interval

where modal class is the class interval with highest frequency. When the sample
is continuous, usually its mode is defined as the most frequent class of the sample
instead of a single point. In categorical data, many analysts prefer the mode of a
sample, or its median instead of its mean, since they are easier to relate to samples
due to its nature.

Example 3.9 (Example3.1 Continued) The commanders now want to know what
are the most frequent values for variable height of their officers, and see if it has a
relationship to its mean and median.

For instance, the mode of the variable E.L is 2 (graduate level). The mode of
variables 1, 3, and 4 are summarized in Table3.7.

Note that the mode of a variable cannot always be a single point. For instance,
variables 1 and 4 have the continuous values in some intervals. This illustrates how
different values in categorical variables can be modes, and interpretation of modal
categories gives an idea of the popular behavior in a sample.

In our example, modal values are still close to the means and medians of all
variables, except for the height which is a little far from its mean. This means that
the officers have a well-defined central tendency on all the variables measured, so
the commanders have more information for planning its supplies.

Note that in a perfectly symmetric data, all the three measures coincide.

Definition 3.5 (Geometric mean) The geometric mean of a sample x1, x2, . . . , xn
namely (xg) is the nth root of the product of the observations.

xg = n

√√√√
n∏

i=1

xi . (3.2)

Table 3.7 Sample modes for
Example3.1

Variable Height (m) E.L Weight (kg)

Mode (1.715–1.805) 2 (89.155–91.175)



3.3 Descriptive Measures 85

Table 3.8 Geometric means
for Example3.1

Variable Height (m) Weight (kg)

Geometric mean 1.855 89.016

If the sample contains a zero, then its geometric mean xg is zero. In categorical data,
it is common to have categories including the value zero. Thus, the geometric mean
is not the best central tendency measure for this kind of data.

Example 3.10 (Example3.1 Continued) The commanders want to knowmore about
the mean height of the officers, so they request for computing the geometric mean of
all variables. For instance, the geometric mean of the variable weight is 89.016kg.

xg = 20
√
83.1 × 91.8 × · · · × 89.9 × 88.3 = 89.016.

The geometric mean of variables 1 and 4 is summarized in Table3.8.
The geometric means of the variables 1 and 4 are still closer to its sample mean,

which indicates a stable central tendency of data samples.

3.3.2 Variability Measures

Variability refers to the spread of a sample, its range, or distribution. A variability
measure gives us an idea of howadata sample is spread around a value. Two important
variability measures are the variance and the standard deviation, which are defined
as follows.

Definition 3.6 (Sample Variance) The sample variance s2 of a sample composed
of the observations x1, x2, . . . , xn is the arithmetic mean of the squared distances
between each observation and its sample mean,

s2 =

n∑

i=1

(xi − x)2

n − 1
=

n
n∑

i=1

x2i −
(

n∑

i=1

xi

)2

n(n − 1)
(3.3)

where n − 1 is the degrees of freedom of the sample variance, one degree of freedom

is lost since
n∑

i

xi is known.

The variance is always nonnegative, and it has the squared units of the sample
values. If the data observations are more spread, the variance is higher and vice versa.

Another important property of the variance is its sensitivity to extreme values
(outliers), since they can change the value of the variance dramatically. Just one
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extreme value can push the variance to be higher than expected. So the analyst has
to be careful when having extreme or unexpected values in the sample.

In practice, variance is one of themost usefulmeasures since it gives us a good idea
about how the variable is spread in the sample, and information about the behavior
of the sample and its variability as well. The smaller variance a sample has, the more
stable it is.

Remark 3.2 Usually, the variance is computed using the mean as central tendency
value, but it is possible to compute the variance using other central tendencymeasures
such as the median or mode.

Definition 3.7 (Sample standard deviation) The sample standard deviation of a
sample composed of the observations x1, x2, . . . , xn is the squared root of its sample
variance, denoted by s,

s = √
s2. (3.4)

The standard deviation is always positive, and it has the same units as the sample.
The behavior of the sample standard deviation is very similar to the sample variance.

In practice, the standard deviation is very useful since it gives us an idea about the
variability of a sample, in the same sample units. This is very useful when analyzing
data because the analyst often wishes to speak in the units same as his sample for
all his analysis, and sometimes it is hard to think in squared units when performing
reports and/or presentations.

Remark 3.3 As the variance can be computed using the other central tendency mea-
sures, the sample standard deviation can also be computed using other central ten-
dency measures.

Example 3.11 (Example3.1 Continued) The commanders now want to know more
information about the variability in the heights shown by their officers. To do so,
they request for computing the sample variance of the provided data.

For instance, the variance of the variable height is 0.01736m2 as shown below:

s2 = (1.76 − 1.859)2 + (1.83 − 1.8592) + · · · + (1.99 − 1.859)2

20 − 1
= 0.32978

19
= 0.01736m2.

The variance of variables 1 and 4 are summarized in Table3.9.
In this case, the weight of the officers shows more variability than the other

variables. The height seems to be very stable since its variance is small.
The recommendation to the commanders is to keep in mind that the weight of the

officers varies considerably, and the supplies should satisfy this condition.

Table 3.9 Sample variances
for Example3.1

Variable Height (m) Weight (kg)

Variance 0.01736 6.2447
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Table 3.10 Standard
deviations for Example3.1

Variable Height (m) Weight (kg)

Standard deviation 0.1317 2.4989

Example 3.12 (Example3.1 Continued) The commanders now want to know about
the variability shown by their officers, in the same units as the original variables to
see how they are spread. To do so, we compute the standard deviation.

For instance, the standard deviation of the variable height is 0.1317m, as follows

s = √
s2 =

√
0.01736m2 = 0.1317m.

The standard deviation of variables 1 and 4 is summarized in Table3.10.
At first glance, the commanders can see that the weight of their officers is more

spread, showing more variability than other variables, as variances as well. Hence,
the supplies should be adjusted accordingly.

3.3.3 Coefficient of Variation

Another interesting question arises when analyzing multiple data sets to compare
variance/standard deviation of different variables. As each variable has different
unit, their variances/standard deviations have different units as well which makes it
difficult to compare volatility or stability of variables. This means that the analyst
should be able to say which variables (or samples) are more volatile than others,
leaving behind the original units of each variable.

The coefficient of variation addresses this problem through a simple computation
which gives us an idea of the behavior of the standard deviation of a sample with
regard to its mean.

Definition 3.8 (Coefficient of variation) The coefficient of variation of a sample
composed of the observations x1, x2, . . . , xn is the ratio of its standard deviation and
the absolute value of its mean denoted as cv

cv = σ

μ
. (3.5)

The coefficient of variation is always positive without units (to simplify the analysis).
Higher the cv of a variable,more volatile/spread the variable is. The cv has the property
of having no units effect. Hence, it is a standardized measure which gives us an idea
of the real spread of a variable, no matter what units (kg, Tons, m3, etc.) the sample
have, which is very convenient to make analysis without confusion.

Example 3.13 (Example3.1 Continued) The commanders are interested in having a
measure of the real variability of each variable, since they are a little bit confused
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Table 3.11 Coefficients of
variation for Example3.1

Variable Height (m) Weight (kg)

Coefficient of
variation

0.071 0.028

with different squared units, and so they requested for the coefficient of variation cv
of all samples. As an example, the cv of the variable 4 (weight) is:

cv = 0.13175

1.859
= 0.071.

The coefficient of variation of variables 1 and 4 is summarized in Table3.11.
Note that the more spread variable is the height which has the smaller unit and

the less spread variable is the weight which has the largest unit. This shows to the
commanders that the supplies have to be more spread in terms of weight than height
since the weight is clearly more variable than height. Finally, the suppliers must
cover the height needs in term of more sizes available for their officers, more variety
in shoes, jackets, uniforms, etc.

Skewness

Skewness is a measure of asymmetry or in a more mathematical sense is a measure
of how asymmetric the sample under consideration is. The skewness of a sample
composed of the observations x1, x2, x3, . . . , xn is the third central moment:

μ3 =

n∑

i=1

(xi − x)3

n
. (3.6)

The sign of μ3 gives us the direction of skewness. If μ3 > 0, we say that the sample
is positively skewed, whereas μ3 = 0 corresponds to symmetry and μ3 < 0 means
that the sample is negatively skewed as shown in Fig. 3.16. In order to compare
different samples, statisticians use coefficient of skewness, denoted by cs , which can
be calculated by dividing skewness by cube of sample standard deviation.

cs = μ3

s3
. (3.7)

Unlike skewness whose units are cube of the units of sample under consideration,
coefficient of skewness is a dimensionless measure. If a population is symmetric
about its mean, skewness is always zero. If skewness is positive, it might be because
of some very large values called outliers or maybe the sample has a right tail.

Kurtosis

Kurtosis refers to how peaked the sample is. For the same reason, some statisticians
also refer to it as peakedness. The coefficient of Kurtosis of a sample composed
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Fig. 3.16 Skewness

of the observations x1, x2, x3, . . . , xn is the arithmetic mean of the fourth powers of
the distances between each observation and its mean, denoted by β.

β =
1
n

n∑

i=1

(xi − x)4

s4
= μ4

s4
. (3.8)

Statisticians use another measure called excess kurtosis, denoted by γ , to describe
whether a sample is flatter or peaked in nature as compared to a normal distributed
sample.

γ = β − 3. (3.9)

For a normal distributed sample, β = 3 implies γ = 0.
A high value of kurtosis means that the sample has sharper peaks and fat tails.

Also if the value of γ > 0, the sample is said to be leptokurtic. If γ = 0, it is called
mesokurtic and if γ < 0, it is called platykurtic and the sample has wider peak about
the mean and thinner tails as shown in Fig. 3.17.

3.3.4 Displaying the Measures and Preparing Reports

Usually, a well-prepared frequency table combined with an explanatory graph where
the cv, s, and s2 are located with their sizes can be very useful when describing data
samples. The idea is to show the analyst the sense and information that all measures
provide, to make a good decision based on structured information.

As a guide for practitioners, we provide a reference graph which can be useful
when preparing reports or further analysis about samples. Figure3.18 shows where
the sample mean is located mostly. It also shows the size of cv, s, and s2 and their
relationship to x .



90 3 Descriptive Statistics

Fig. 3.17 Kurtosis

Fig. 3.18 Measures of a
sample

Sample domain

cv

s2

s

x̄

Another important aspect of applied statistics is theway inwhich an analystmakes
a report to summarize the measures. The analyst has to present their findings in an
easy and concise format, in order to provide the best understanding about the results.

Example 3.14 (Example3.1 Continued) After finishing the computation of all main
results, the commanders want to summarize the obtained statistics into a compre-
hensive report. Thus, the analyst prepares a summary report of the obtained results,
as shown in Table3.12.

The information provided in Table3.12 shows the average of variables 1 and 4,
which is fundamental in planning supplies such as uniforms, shoes, equipment, and
food. The range, variance, and standard deviation give an idea of the variety in sizes,
materials, and qualities for the supplies, and the coefficient of variation provides
valuable information about the quantities of each kind of supply.

3.3.4.1 Useful Hints When Performing Reports

Writing a report is an important part of a statistical study since it is what the customer
reads. A statistical report is the business card of the analyst and the obtained results.
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Table 3.12 Summary report
for Example3.1

Variable Height (m) Weight (kg)

Max 2.13 93.2

Min 1.71 83.1

Range R j 0.42 10.1

Mean x 1.859 89.05

Variance s2 0.01736 6.2447

Std. deviation s 0.1317 2.4989

Coeff. of variation cv 0.071 0.028

Median 1.82 89.15

Mode (1.715–1.805) (89.155–91.175)

Geom. mean xg 1.855 89.016

Skewenss μ3 0.7612 −0.4624

Kurtosis β 2.4220 3.0126

Thus, the better a report is presented, the better the information provided. Thus, the
following hints are recommended when preparing statistical reports:

1. Be orderly: Any statistical report should include several ordered main sections,
namelyDescription of the information,Main report presented in tables,Descrip-
tive graphs, and Description of the results. Additionally, a statistical report can
include some recommendations for implementing the obtained results.

2. Be clear: Take care of the language usage since any report should be clear to
the reader. Always write in an easy way, using both technical and nontechnical
language, so as to be understood by the reader. Always include key information
about the study and avoid useless information.

3. Be brief : Do not extend a report. Be concise and just write what is necessary
(or what it was requested by the customer). Sometimes, extensive text can be
confusing to the reader which is undesirable. Do not exclude interesting findings
or important information and just include all needed information supplemented
by a clear and brief explanation of the report.

4. Goodpresentation: It is highly desirable to show the obtained results in good pre-
sentation, language, and standard format. A pleasant report is easier to understand
and read. Do not allow changes in the text format of graphs but use a standard
format according to the customer’s requirements.

The above recommendations can help the analyst to present a clear and good report
that the customer may consider as valuable. The main idea is to provide key infor-
mation to be implemented by the customer. The interested readers may refer to Ross
(2014).
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Problems

3.1 Marks (out of 100) obtained by a class of students in course “Probability and
Statistics” is given in Table3.13.

1. Write the frequency table for interval of ten marks, i.e., 1–10, 11–20, and so on.
2. Draw the histogram of the distribution.
3. Comment on the symmetry and peakedness of the distribution after calculating

appropriate measures.

3.2 Let X equal the duration (in min) of a telephone call that is received between
midnight and noon and reported. The following times were reported

3.2, 0.4, 1.8, 0.2, 2.8, 1.9, 2.7, 0.8, 1.1, 0.5, 1.9, 2, 0.5, 2.8, 1.2, 1.5, 0.7, 1.5, 2.8, 1.2

Draw a probability histogram for the exponential distribution and a relative frequency
histogram of the data on the same graph.

3.3 Let X equal the number of chips in a chocolate chip cookies. Hundred observa-
tions of X yielded the following frequencies for the possible outcome of X .

Outcome(x) 0 1 2 3 4 5 6 7 8 9 10
Frequency 0 4 8 15 16 19 15 13 7 2 1

1. Use these data to graph the relative frequency histogram and the Poisson proba-
bility histogram.

2. Do these data seem to be observations of a Poisson random variable with mean
λ. Find λ.

3.4 Show that the total sum of the distances between each data and its mean, namely
d, di = xi − x , is zero.

3.5 Calculate the value of commonly used statistics to find measure of spread for
the runs scored by the Indian Cricket Team based on their scores in last 15 One Day
Internationals while batting first. The data are shown in Table3.14.

Table 3.13 Data for Problem3.1

68 34 56 23 45 78 67 96 76 45 75 34 89 92 50 47 56 72 59 55 92 88 53 71 49

53 19 45 34 23 76 45 67 43 56 78 94 74 38 58 52 64 53 89 48 58 54 39 66 62

Table 3.14 Data for Problem3.5

281 307 251 429 241 189 256 194 267 385 228 299 247 331 389
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Table 3.15 Frequency table for Problem3.6

Age(years) 0–14 15–19 20–29 30–39 40–49 50–79

Frequency 14 40 28 27 24 17

3.6 A mobile phone company examines the ages of 150 customers to start special
plans for them. Consider frequency table shown in Table3.15.

1. Draw the histogram for the data.
2. Estimate the mean age for these policyholders.
3. Estimate the median age for these policyholders.

3.7 A sample of 10 claims in an insurance company had mean and variance of 5,478
and 1,723, respectively. On reconciliation, it was found that one claim of 3,250 was
wrongly written as 4,250. Calculate the mean and standard deviation of the sample
with correct values.

3.8 Suppose a state government wants to analyze the number of children in families
for improving their immunization program. They analyze a group of 200 families
and report their findings in the form of a frequency distribution shown in Table3.16

1. Draw the bar chart for the following data and calculate the total number of
children.

2. Calculate mean, mode, and median of the data.
3. Calculate coefficient of kurtosis and coefficient of skewness in the above data.

3.9 An insurance company wants to analyze the claims for damage due to fire on
its household content’s policies. The values for a sample of 50 claims in Rupees are
shown in Table3.17.

Table3.18 displays the grouped frequency distribution for the considered data.

Table 3.16 Frequency table for Problem3.8

No. of children 0 1 2 3 4 5 6 7

No. of families 18 30 72 43 25 8 3 1

Table 3.17 Data for Problem3.9

57000 115000 119000 131000 152000 167000 188000 190000 197000 201000

206000 209000 213000 217000 221000 229000 247000 250000 252000 253000

257000 257000 258000 259000 260000 261000 262000 263000 267000 271000

277000 285000 287000 305000 307000 309000 311000 313000 317000 321000

322000 327000 333000 351000 357000 371000 399000 417000 433000 499000
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Table 3.18 Grouped frequency distribution of the data given in Table3.17

Claim size
(In 1000’s
of Rupees)

50–99 100–149 150–199 200–249 250–299 300–349 350–399 400–449 450–500

Frequency 1 3 5 8 16 10 4 2 1

1. What is the range of the above data?
2. Draw a bar graph for Table3.18.
3. For the data given in Table3.18 if instead of equal-sized groups, we had a single

group for all value below 250, how would this bar be represented?
4. Calculate the mean, median, mode, and sample geometric mean.
5. Calculate the sample standard deviation and sample variance.
6. Calculate the coefficient of variation.

3.10 Suppose the Dean of a college wants to know some basic information about
the height of the students of the last six year groups. To do so, twenty students
were selected from each group and their heights were measured, so a total of 120
observations divided into six groups are taken. The obtained results are presented in
Table3.19.

The Dean needs to know if there is any evidence that some students have the
required height to play sports such as basketball, volleyball, and swimming. On the
other hand, he is looking for some useful information to plan some requirements
such as uniforms, shoes and caps. Provide a descriptive report of the information
found in the provided data. If possible, also provide graphics and recommendations.

3.11 Show that the variance of any variable s2 can be expressed as

s2 =

n∑

i=1

x2i −

(
n∑

i=1

xi

)2

n

n − 1
.

Test out this result against all data provided in Problem3.10.

3.12 The department of analysis of a taxicab company has the records of 15 drivers,
which are shown in Table3.20. Those records include the following information:
distance (Km), amount of crashes, amount of fines received per driver, amount of
visits to garage for repairs (V.T.G), and days of operation (D.O.O).

Provide a statistical report of the information provided by data. The department
of analysis of the company is looking for information useful to identify good drivers
and the efficiency of the fleet.

3.13 Consider Problem3.12. The department of analysis of the company suggests
to compare all variables to each others using graphical analysis. The idea is to find
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Table 3.19 Data for Problem3.10

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

175 172 162 174 177 176

174 179 182 170 185 162

190 170 166 154 177 183

187 177 175 168 179 158

181 186 192 186 191 169

173 183 199 200 183 184

200 188 168 164 171 166

189 169 188 184 178 170

173 178 187 182 182 171

186 179 178 164 170 182

176 163 196 169 183 177

170 171 158 184 154 144

177 178 190 175 152 164

186 198 165 177 173 180

178 184 159 167 189 179

154 203 174 165 190 174

192 193 160 194 174 185

188 174 177 160 182 148

185 175 181 186 183 188

194 172 170 162 155 187

Table 3.20 Recorded data for Problem3.12

km Crash Fines V.T.G D.O.O

13,381 0 0 1 240

12,200 0 0 0 240

30,551 1 1 2 240

26,806 0 3 0 240

11,984 0 0 0 240

32,625 0 1 0 240

60,308 1 1 2 240

24,683 0 0 0 240

8,167 0 0 1 360

11,198 0 0 0 360

26,120 0 0 0 360

186,632 2 4 3 360

7,147 1 2 2 360

18,731 0 1 1 360

2,129 2 2 2 360
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some patterns whose information should be useful to identify possible relationships
among variables. Provide only interesting graphics alongside with a description of
their findings.

Reference

Ross SM (2014) Introduction to probability and statistics for engineers and scientists. Academic
Press, London



Chapter 4
Sampling Distributions and Estimation

Now, we are ready to discuss the relationship between probability and statistical
inference. The two key facts to statistical inference are (a) the population parameters
are fixed numbers that are usually unknown and (b) sample statistics are known for
any sample. For different samples, we get different values of the statistics and hence
this variability is accounted for identifying distributions called sampling distribu-
tions. In this chapter, we discuss certain distributions that arise in sampling from
normal distribution. The other topics covered in this chapter are as follows: unbi-
asedness, mean square error, consistency, relative efficiency, sufficiency, minimum
variance, Fisher information for a function of a parameter, Cramer–Rao lower bound,
efficiency, method of moments, maximum likelihood estimation to find estimators
analytically and numerically, and asymptotic distributions of maximum likelihood
estimators.

4.1 Introduction

If X is a random variable with certain probability distribution and X1, X2, . . . , Xn

are independent random variables each having the same distribution as X , then
(X1, X2, . . . , Xn) is said to constitute a random sample from the random variable
X . Thus, a sample can be imagined as a subset of a population. A population is
considered to be known when we know the distribution function (probability mass
function p(x) or probability density function f (x)) of the associated randomvariable
X . If, for example, X is normally distributed, we say that the population is normally
distributed or that we have a normal population. Each member of a sample has the
same distribution as that of the population.
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Sampling from Infinite Population

Consider an infinite population. Suppose the experiment is performed and x1 is
obtained. Then, the experiment is performed second time and x2 is observed. Since
the population is infinite, removing x1 does not affect the population, so x2 is
still a random observation from the same population. In terms of random variable,
X1, X2, . . . , Xn are mutually independent and identically distributed random vari-
ables and their realizations are x1, x2, . . . , xn .

Sampling from Finite Population

Consider the sampling from a finite population. A finite population is a finite collec-
tion {x1, . . . , xN }. Suppose we have to draw a sample of size n from this population.
This can be performed in the following ways:

1. With Replacement: Suppose a value is chosen from the population such that
each value is equally likely to be chosen. After each selection, the chosen item
is replaced and a fresh selection is made. This kind of sampling is known as
sampling with replacement because item drawn at any stage is replaced in the
population. In terms of random variables, the sample X1, . . . , Xn obtained is
mutually independent and each Xi can take the values x1, . . . , xN with equal
probability. Theoretically, sampling from a finite population with replacement is
akin to sampling from an infinite population.

2. Without Replacement: Sampling without replacement from a finite population
is performed as follows. A value is chosen from x1, . . . , xN in such a way that
each value is equally likely to be chosen. The value obtained is first sample point.
Now, second sample point is chosen from rest N − 1 in such a way that each point
is equally likely with probability 1

N−1 . This procedure continues giving sample
x1, . . . , xn . We observe that a value chosen once is not available for choice at any
later stage. In terms of random variables, the sample obtained X1, . . . , Xn is not
mutually independent in this case, but they are identically distributed.

The following examples shall make the above assertions amply clear:

• A pair of coin is tossed. Define the random variable X1 = number of heads
obtained. In a sense, X1 can be thought of as a sample of size one from the
population of all possible tossing of that coin. If we tossed the coin a second time
and defined the random variable X2 as the number of heads obtained on the sec-
ond toss, X1, X2 could presumably be considered as a sample of size two from the
same population.

• The total yearly rainfall in a certain locality for the year 2013 could be described
as a random variable X1. During successive years, random variables X2, . . . , Xn

could be defined analogously. Again, we may consider (X1, X2, . . . , Xn) as a
sample of size n obtained from the population of all possible yearly rainfalls
at the specified locality. And it might be realistically supposed that the X ′

i s are
independent, identically distributed (i.i.d) random variables.

• The life length of a light bulb manufactured by a certain process in a factory is
studied by choosing n bulbs and measuring their life lengths say T1, T2, . . . , Tn .
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We may consider (T1, T2, . . . , Tn) as a random sample from the population of all
possible life lengths of bulbs manufactured in a specified way.

• Consider testing of a new device for measuring blood pressure. Try it out on
n people, and record the difference between the value returned by the device
and the true value as recorded by standard techniques. Let Xi , i = 1, 2, . . . , n
be the difference for the i th person. The data will consist of a random vector
(X1, X2, . . . , Xn), and (x1, x2, . . . , xn) is a particular vector of real numbers. A
possible model would be to assume that X1, X2, . . . , Xn are independent random
variables each having N (0, σ 2) where σ 2 is some unknown positive real number.

One possible way to do statistical inference for finite populations is by ensuring that
every member of the population is equally likely to be selected in the sample, which
is often known as a random sample. For populations of relatively small size, random
sampling can be accomplished by drawing lots or equivalently by using a table of
random numbers specially constructed for such purposes.

Once we have obtained the values of a random sample, we usually want to use
them in order to make some inference about the population represented by the sam-
ple which in the present context means the probability distribution of the random
variable being sampled. Since the various parameters which characterize a proba-
bility distribution are numbers, it is natural that we would want to compute certain
pertinent numerical characteristics obtainable from the sample values which might
help us to make appropriate statements about the parameter values which are often
not known.

Definition 4.1 (Statistics) Let X1, X2, . . . , Xn be a random sample from a popula-
tion described by the random variable X , and let x1, x2, . . . , xn be the values assumed
by the sample. Let H be a function defined for the n-tuple (x1, x2, . . . , xn). Then,
Y = H(X1, X2, . . . , Xn) is said to be a statistic provided that it is not a function of
any unknown parameter(s).

Thus, a statistic is a real-valued function of the sample. Sometimes, the term statistic
is also used to refer to the value of the function. Another important conclusion
drawn from the above definition is that a statistic is a random variable. Hence, it
is meaningful to consider the probability distribution of a statistic, its expectation,
and variance. More often than not for a random variable which is a statistic, we
speak about its sampling distribution rather than its probability distribution. The
probability distribution of a sample statistics is often called the sampling distribution
of the statistics.

Some Important Statistics

There are certain statistics which we encounter frequently. A few of them are as
follows:

1. The mean of the sample or sample mean is a random variable defined as

X̄ =

n∑

i=1

Xi

n .
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2. The sample variance defined as s2 =

n∑

i=1

(Xi − X̄)2

n−1 .

3. Theminimumof the sample defined as K = min(X1, X2, . . . , Xn). (K represents
the smallest observed value.)

4. The maximum of the sample defined as M = max(X1, X2, . . . , Xn). (M repre-
sents the largest observed value.)

Let us now discuss some of them in detail:

Sample Mean

Consider a population where each element of the population has some numerical
quantity associated with it. For instance, the population might consist of the under-
graduate students of a country, and the value associated with each student might be
his/her height, marks, or age and so on. We often assume the value attached to any
element of the population to be the value of a random variable with expectation(μ)
and variance(σ 2). The quantities μ and σ 2 are called the population mean and the
population variance, respectively. Let X1, X2, . . . , Xn be a sample of values from
this population. Also, let the population considered follow a normal distribution.
Thus, Xi ∼ N (μ, σ 2), i = 1, 2, . . . , n. The sample mean is defined by

X̄ = X1 + X2 + · · · + Xn

n
.

Since the value of the sample mean X̄ is determined by the values of the random
variables in the sample, it follows that X̄ is also a random variable. Now, as each
member of the population is an independent random variable, using result on sum of
independent normal random variables (see Sect. 2.4.2), we have

n∑

i=1

Xi ∼ N (nμ, nσ 2).

Therefore, expectation of the sample mean becomes

E(X̄) = nμ

n
= μ. (4.1)

That is, the expected value of the sample mean, X̄ , is equal to the population mean,
μ. If the population is infinite and the sampling is random or if the population is
finite and sampling is performed with replacement, then the variance of the sample
mean turns out to be

Var(X̄) = nσ 2

n2
= σ 2

n
(4.2)

where σ 2 is the population variance. Thus, X̄ ∼ N (μ, σ 2

n ).
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If the population is of size N and if sampling is performed without replacement,
then (4.2) is replaced by

Var(X̄) = 1

n2
Var

(
n∑

i=1

Xi

)
= 1

n2

⎡

⎣
n∑

i=1

Var(Xi ) +
n∑

i �= j

Cov(Xi , X j )

⎤

⎦

= 1

n2

[
nσ 2 + n(n − 1)

( −σ 2

N − 1

)]
= nσ 2

n2

(
N − n

N − 1

)
= σ 2

n

(
N − n

N − 1

)

(4.3)

whereas E(X̄) is still given byEq. (4.1). The term N−n
N−1 is also known as the correction

factor. Note that (4.3) reduces to (4.2) as N → ∞.
Therefore, we observe that the expectation of sample mean X̄ is same as that of an

individual random variable Xi , but its variance is smaller than that of the individual
random variable by a factor of 1

n , where n is the sample size. Therefore, we can
conclude that sample mean is also symmetric about the population mean μ, but its
spread, i.e., variance, decreases with the increase in the sample size. Thus,

X̄ ∼ N

(
μ,

σ 2

n

)
.

By the central limit theorem, for large sample size,

Z = (X̄ − μ)

(σ/
√
n)

(4.4)

has approximately the standard normal distribution, N (0, 1), i.e.,

lim
n→∞ P

(
(X̄ − μ)

(σ/
√
n)

≤ z

)
= 1√

2π

∫ z

−∞
e−u2/2du.

Sample Variance

Suppose that X1, X2, . . . , Xn is a random sample from a random variable X with
expectation μ and variance σ 2. Then, the sample variance s2 is given by

s2 = 1

n − 1

n∑

i=1

(
Xi − X̄

)2

where X̄ is the samplemean.Now, let us derive the expectation of the sample variance.
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Consider

n∑

i=1

(Xi − X̄)2 =
n∑

i=1

(Xi − μ + μ − X̄)2 =
n∑

i=1

[(Xi − μ)2 + 2(μ − X̄)(Xi − μ) + (μ − X̄)2]

=
n∑

i=1

(Xi − μ)2 + 2(μ − X̄)

n∑

i=1

(Xi − μ) + n(μ − X̄)2

=
n∑

i=1

(Xi − μ)2 − 2n(μ − X̄)2 + n(μ − X̄)2 =
n∑

i=1

(Xi − μ)2 − n(X̄ − μ)2.

Therefore,

E

(
1

n − 1

n∑

i=1

(Xi − X̄)2

)
= 1

n − 1

[
nσ 2 − n

σ 2

n

]
= σ 2. (4.5)

Note that although s2 is defined as the sum of squares of n terms, these n terms are
not independent. In fact,

(X1 − X̄) + (X2 − X̄) + · · · + (Xn − X̄) =
n∑

i=1

Xi − n X̄ = 0.

Hence, there is a linear relationship among these n terms which means that as soon
as any of the (n − 1) of these are known, the nth one is determined.

4.2 Statistical Distributions

Now, we discuss chi-square distribution, student’s t-distribution, and F-distribution
that arise in sampling from normal distribution. We will study the importance of
these distributions later in this section.

4.2.1 The Chi-Square Distribution

Consider a random variable X which has the following probability density function

f (x) =
{

2
−v
2

Γ (v/2) x
(v/2)−1 e−x/2, 0 < x < ∞

0 otherwise
(4.6)

where Γ (x) is the gamma function. Then, X is said to have chi-square distribution
with ν degrees of freedom. The degrees of freedom of a distribution are a positive
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Fig. 4.1 PDF of χ2 distribution with different degrees of freedom

integer which is same as the number of independent values or quantities which can
be assigned to the concern distribution. In notation, we write X ∼ χ2

ν . It is same as
gamma distribution with r = ν/2, where ν is a positive integer and λ = 1/2.

The χ2 distribution is asymmetric and changes shape with degrees of freedom as
shown in Fig. 4.1.

Mean and Variance of χ2 Distribution:

E(X) =
∫ ∞

0
x
(1/2)ν/2

Γ (ν/2)
xν/2−1 e−x/2dx = ν.

Similarly, we can see that E(X2) = ν2 + 2ν. Therefore,

Var(X) = E[X2] − [E(X)]2 = ν2 + 2ν − (ν)2 = 2ν.

The first four moments of χ2
ν are

μ1 = ν, μ2 = 2ν, μ3 = 8ν, μ4 = 48ν + 12ν2.

The χ2
ν distribution is tabulated for values of ν = 1, 2, . . . , 30. For ν > 30, we can

approximate it by normal distribution, i.e.,

X − ν

2ν
∼ N (0, 1).

We will write χ2
ν,α for the point corresponding to right tail probability α of the χ2

ν

distribution, i.e.,
P(χ2

ν > χ2
ν,α) = α. (4.7)

TableA.8 gives the values of χ2
ν,α for some selected values of ν and α.
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Example 4.1 Let X be the temperature atwhich certain chemical reaction takes place
and be χ2 random variable with 32 degrees of freedom. Find P(X ≤ 34.382). Also,
approximate the same using central limit theorem.

Solution: From TableA.8, we can obtain P(X ≤ 34.382) = 0.6457. On the other
hand, using CLT we have

P(X ≤ 34.382) = P

(
X − 32√

64
≤ 34.382 − 32√

64

)
= P(Z ≤ 0.2978) = 0.6171.

Remark 4.1 1. Let X1, X2, . . . , Xn be n independent random variables follow-
ing chi-square distribution with ν1, ν2, . . . , νn degrees of freedom, respectively.
Then, the random variable W = X1 + X2 + · · · + Xn also follows chi-square
distribution with ν1 + ν2 + · · · + νn degrees of freedom. In other words, we can
say that chi-square distribution satisfies the reproductive property.

2. Let X1 and X2 be two independent random variables such that X1 follows chi-
square distribution with ν1 degrees of freedom, while Y = X1 + X2 follows
chi-square distribution with ν degrees of freedom. Assume that ν > ν1. Then,
X2 also follows chi-square distribution with ν − ν1 degrees of freedom.

3. Given a standard normal random variable Z , Z2 follows χ2 distribution with one
degree of freedom (see Example2.17). Similarly, let Z1, Z2, . . . , Zν be indepen-

dent standard normal random variables, and
ν∑

i=1

Z2
i follows χ2 distribution with

ν degrees of freedom.
4. It is worthwhile to note that a χ2 variable with ν = 2 is same as the exponential

variable with parameter λ = 1/2.
5. If X ∼ U (0, 1), then−2 log(X) follows chi-square distributionwith two degrees

of freedom.
6. Another interesting point to note is that if X is gamma-distributed random

variable with parameters ν and λ, then the random variable 2λX is chi-square
distributed with 2ν degrees of freedom. This comes handy for calculating the
probabilities associatedwith gammadistribution asχ2 tables are easily available.

7. For large ν (ν ≥ 30), we can show that
√
2χ2 − √

2ν − 1 is approximately
normal distributed with mean zero and variance one.

4.2.2 Student’s t-Distribution

Consider a random variable X which has the probability density function as follows:

f (x) = Γ (ν+1
2 )√

πνΓ (ν
2 )

(
1 + x2

ν

)− ν+1
2

,−∞ < x < ∞. (4.8)
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Then, X is said to have student’s t-distribution1 with ν degrees of freedom, i.e.,
X ∼ tν .

Given a random variable X which is χ2-distributed with degrees of freedom ν

and a standard normal distributed random variable Z which is independent of χ2,
the random variable Y defined as:

Y = Z√
X/ν

follows t-distribution with degrees of freedom ν (Verify!).
If ν is large (ν ≥ 30), the graph of f (x) closely approximates the standard normal

curve as indicated in Fig. 4.2. Since the t-distribution is symmetrical, tγ−1 = −tγ .
We will write tν,α for the value of t for which we have

P(T > tν,α) = α. (4.9)

By symmetry, it follows that

P(|T | > tν, α
2
) = α. (4.10)

TableA.10 gives the values of tν,α for some selected values of ν and α. For example,
P(T > t5,0.05) = 2.015.

Mean and Variance of t-Distribution:

Like the standard normal distribution, t-distribution is also symmetric about 0.Hence,
its mean is 0. Also, it is flatter than the normal distribution as shown in Fig. 4.2.

E(Y ) = 0, Var(Y ) = ν

ν − 2
, ν > 2.

The t-distribution is used in hypothesis testing of mean in sampling distribution and
finding the confidence intervals which will be discussed in later chapters. Further,
in order to calculate the probabilities, we use tables as integrating the PDF is a very
tedious job.

4.2.3 F-Distribution

Consider a random variable X which has the probability density function as follows:

f (x) =
{

Γ (
ν1+ν2

2 )

Γ (
ν1
2 )Γ (

ν2
2 )

(
ν1
ν2

) ν1
2

.x
ν1
2 −1

(
1 + ν1

ν2
x
)−(ν1+ν2)/2

0 < x < ∞
0 otherwise

. (4.11)

1William Sealy Gosset (June 13, 1876–October 16, 1937) was an English statistician. He published
under the pen name Student and developed the student’s t-distribution.
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Fig. 4.2 PDF of t-distribution with different values of ν

Then, X is said to have the F-distribution2 with ν1 and ν2 degrees of freedom, i.e.,
X ∼ F(ν1, ν2). The PDFof X is shown in Fig. 4.3. Consider two independent random
variables Y1 and Y2 which are χ2-distributed with degrees of freedoms ν1 and ν2,
respectively. The random variable X defined as follows:

X = Y1/ν1
Y2/ν2

will have an F-distribution with ν1 and ν2 degrees of freedom, i.e., X ∼ F(ν1, ν2)

(Verify!).

Mean and Variance of F-Distribution:

For k > 0,

E(Xk) =
(

ν1

ν2

)k Γ
(
k + ν2

2

)
Γ
(

ν1
2 − k

)

Γ
(

ν2
2

)
Γ
(

ν1
2

) , ν1 > 2k.

In particular,

E(X) = ν1

ν1 − 2
, ν1 > 2, Var(X) = ν2

1 (2ν2 + 2ν1 − 4)

ν2(ν1 − 2)2(ν1 − 4)
, ν1 > 4.

Typical F-distribution is given in Fig. 4.3:
F-distribution is asymmetric and is right-skewed. Again, we will calculate the

probabilities using the tables rather than integrating the PDF. F-distribution is impor-
tant in carrying out hypothesis testing and calculating the confidence intervals while
comparing variances of two different populations.

2GeorgeWaddel Snedecor (October 20, 1881–February 15, 1974) was an American mathematician
and statistician.He contributed to the foundations of analysis of variance, data analysis, experimental
design, and statistical methodology. Snedecor’s F-distribution and the George W. Snedecor Award
of the American Statistical Association are named after him.
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Fig. 4.3 The PDF of F-distribution with different parameters ν1 and ν2

We write Fν1,ν2,α for the upper α percent point of the F(ν1, ν2) distribution, i.e.,

P(Fν1,ν2 > Fν1,ν2,α) = α. (4.12)

For a given confidence level (1 − α)100%, we have

Fν1,ν2,α = 1

Fν2,ν1,1−α

. (4.13)

TableA.11 gives the values of Fν1,ν2,α for some selected values of ν1, ν2 and α.
Table4.1 gives the mean, variance, and MGF of the standard sampling distributions.

4.2.4 Some Important Results on Sampling Distributions

1. If X1, X2, . . . , Xn constitute a random sample drawn from a population with
mean μ and variance σ 2, then the sample mean(X̄ ) has E[X̄ ] = μ and Var(X̄ ) =
σ 2

n .
2. If X̄ is the sample mean of random sample of size n drawn without replacement

from a population of size N with mean μ and variance σ 2, then

E(X̄) = μ, Var(X̄) = σ 2(N − n)

n(N − 1)
.

Further E(s2) = N
N−1σ

2. As N → ∞, E(s2) tends to the population variance σ 2.
3. If X1, X2, . . . , Xn constitute a random sample drawn from a normal population

with mean μ and variance σ 2 and the sample variance s2 is given by
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s2 =

n∑

i=1

(Xi − X̄)2

n − 1
.

then (n−1)s2

σ 2 has χ2 distribution with n − 1 degrees of freedom (see Problem4.2).
4. Joint Distribution of Sample Mean and Sample Variance

Let Xi ∼ N (μ, σ 2), i = 1, 2, . . . , n be a random sample from N (μ, σ 2). We

want to find the joint distribution of X̄ =
∑n

i=1 Xi

n and S2 =
∑n

i=1(Xi−X̄)2

n−1 .
We will show that X̄ and S2 are independent and hence their joint PDF can be
obtained as a product of their individual PDFs. In order to show that X̄ and S2 are
independent, it is sufficient to show that X̄ and (X1 − X̄ , X2 − X̄ , . . . , Xn − X̄)

are independent.
The MGF ofX̄ and (X1 − X̄ , X2 − X̄ , . . . , Xn − X̄) is given by

M(t, t1, t2, . . . , tn) = E
(
exp{t X̄ + t1(X1 − X̄) + · · · + tn(Xn − X̄)})

= E

(
exp

{
n∑

i=1

ti Xi −
(

n∑

i=1

ti − t

)
X̄

})

= E

(
exp

{
n∑

i=1

Xi

(
ti − t1 + t2 + · · · + tn − t

n

)})

= E

(
Πn

i=1 exp

{
Xi (nti − nt̄ + t)

n

})(
where t̄ =

n∑

i=1

ti
n

)

= Πn
i=1E

(
exp

{
Xi (nti − nt̄ + t)

n

})

= Πn
i=1 exp

{
μ(t + n(ti − t̄))

n
+ σ 2

2n2
(t + n(ti − t̄))2

}

= exp{μt} exp
{

σ 2

2n2

(
nt2 + n2

n∑

i=1

(ti − t̄)2
)}

= exp

{
μt + σ 2

2n
t2
}
exp

{
σ 2

2

n∑

i=1

(ti − t̄)2
}

= MX̄ (t)MX1−X̄ ,...,Xn−X̄ (t1, t2, . . . , tn)

5. If the population variance σ 2 is unknown, then replace σ in Eq. (4.4) by the
random variable s. Take T = X̄−μ

s/
√
n
. One can prove using Remark3 and definition

of student’s t-distribution that T has student’s t-distribution with n − 1 degrees
of freedom whenever the population random variable is normal distributed.

6. Let two independent random samples of size ν1 and ν2, respectively, be drawn
from the two normal populations with variances σ 2

1 and σ 2
2 , respectively. Then if

the variances of the random samples are given by s21 , s
2
2 , respectively, the statistic
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F = (ν1 − 1)s21/(ν1 − 1)σ 2
1

(ν2 − 1)s22/(ν2 − 1)σ 2
2

= s21/σ
2
1

s22/σ
2
2

has the F-distribution with ν1 − 1, ν2 − 1 degrees of freedom. It follows using
Remark3 and definition of F-distribution.

Example 4.2 Bombay Stock Exchange (BSE) is the world’s tenth largest stock mar-
ket by market capitalization. Given that there are 5,000 companies that are listed
on BSE. Assume that the pairs of stocks are uncorrelated and the average price of
a stock is 500 rupees, with a standard deviation of 100 rupees. Suppose you draw
a random sample of 50 stocks. What is the probability that the average price of a
sampled stock will be less than 497 rupees?

Solution:

Let average price of a sampled stock be represented by X̄ .

E(X̄) = μ, Var(X̄) = σ 2

n
. (4.14)

Hence, from the values given in the problem, we have μ = 500, σ = 100, and n =
5000.

P(X̄ ≤ 497) = P

(
X̄ − μ

σ√
n

≤ 497 − μ
σ√
n

)
= Φ

(
497 − μ

σ√
n

)

= 1 − Φ

(
μ − 497

σ√
n

)
= 1 − Φ

(
3
100√
5000

)
= 1 − Φ(2.12) = 0.017

where the value of Φ(2.12) comes from TableA.7 in Appendix.

4.2.5 Order Statistics

Let (X1, . . . , Xn) be an n-dimensional random variable and (x1, . . . , xn) be its real-
ization. Arrange (x1, . . . , xn) in increasing order of magnitude so that

x(1) ≤ x(2) ≤ · · · ≤ x(n)

where x(1) = min {x1, x2, . . . , xn}, x(2) is the second smallest value and so on, x(n) =
max {x1, x2, . . . , xn}. If any two xi , x j are equal, their order does not matter.

Definition 4.2 The function X(k) of (X1, . . . , Xn) that takes the value x(k) in each
possible sequence (x1, . . . , xn) of realizations of (X1, . . . , Xn) is known as kth order
statistic or statistic of order k. {X(1) ≤ X(2) ≤ · · · ≤ X(n)} is called the set of order
statistics for (X1, . . . , Xn).
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Example 4.3 Let X1, . . . , Xn be n independent random variables with PDF

fXi (xi ) =
{

λi e−λi xi if xi > 0,
0 if xi ≤ 0.

i = 1, 2, . . . , n.

with λi > 0 ∀ i . Find the distribution of Y = min{X1, X2, . . . , Xn} and
Z = max{X1, X2, . . . , Xn}.

Solution:

For y > 0, we have

P(Y > y) = P(min{X1, X2, . . . , Xn} > y) = P(X1 > y, X2 > y, . . . , Xn > y)

= P(X1 > y)P(X2 > y) · · · P(Xn > y) = Πn
i=1e

−λi y = e

−y

n∑

i=1

λi

.

Therefore, CDF of Y is given by, for y > 0

FY (y) = 1 − P(Y > y) = 1 − e

−y

n∑

i=1

λi

.

Hence, Y follows exponential distribution with parameter
n∑

i=1

λi . Similarly, CDF of

Z is given by, for z > 0

P(Z ≤ z) = P(max{X1, X2, . . . , Xn} ≤ z) = P(X1 ≤ z, X2 ≤ z, . . . , Xn ≤ z)

= P(X1 ≤ z)P(X2 ≤ z) · · · P(Xn ≤ z) = Πn
i=1(1 − e−λi z).

4.3 Point Estimation

In the previous section on sampling distributions, we mentioned that very often a
sample from a random variable X may be used for the purpose of estimating one or
more of several unknown parameters associated with the PMF/PDF of X . Suppose,
for example, that one is interested to arrive at a conclusion regarding the proportion
of females in a particular region who prefer to read a particular fashion magazine. It
would be tedious or sometimes impossible to ask every woman about her choice in
order to obtain the value of the population proportion denoted by parameter p.

Instead, one can select a large random sample and calculate the proportion p̂ of
women in this sample who favors that particular fashion magazine. The obtained
value of p̂ can now be used to make inferences regarding the true population pro-
portion p.



112 4 Sampling Distributions and Estimation

The main purpose of selecting random samples is to elicit information about the
unknown population parameters. That is, an analyst uses the information in a sample
X1, X2, . . . , Xn to make inferences about an unknown parameter θ of the population.
A sample of size n is a long list of numbers that may be hard to infer anything.
Thus, the analyst wishes to summarize the information contained in the sample by
determining some characteristics of sample values which is usually performed by
computing statistics.

Let us consider the problem where a manufacturer supplies 10000 objects. If X
is the number of objects that are acceptable, then

X∼B(10000, p) (4.15)

where p is the probability that a single object is acceptable.
The probability distribution of X depends on the parameter p in a very simple

way. The question is: Can we use the sample X1, X2, . . . , Xn in some way in order
to estimate p? Is there some statistic that may be used to estimate p?
Note: It should be noted that for any sample of size n < 10000, the estimate for p is
most likely not equal to its actual value.

Thus, when we propose p̂ as an estimator for p, we do not really expect value of
p̂ to be equal to p (recall that p̂ is a random variable and can thus take many values).

We shall now discuss the characteristics of a “good estimate” and variousmethods
to estimate the parameters, etc.

4.3.1 Definition of Point Estimators

Let us begin by defining some concepts which will help us to resolve the problems
suggested above.

Definition 4.3 (Estimator) Let X be a random variable corresponding to the pop-
ulation. Assume that the distribution of X is F(x, θ), where θ is the parameter.
Further, assume that θ is unknown. Let (X1, X2, . . . , Xn) be a random sample of
size n drawn from the population. Any function T (X1, X2, . . . , Xn), independent of
θ , is an estimator of ψ(θ).

In other words, an estimator is a statistic involving sample values (such as sum of the

sample
n∑

i=1

Xi , variance of the sample, etc.) which is used to estimate parameters of

a distribution.
For example, if xi are the observed grade point averages of a sample of 88 students,

then

x̄ = 1

88

88∑

i=1

xi = 3.12



4.3 Point Estimation 113

is a point estimate of μ, the mean grade point average of all the students in the
population.

Estimators are generally depicted with a “hat” on top, such as p̂, θ̂ . The values
assumed by the estimator are known as the estimates of the unknown parameter.

4.3.2 Properties of Estimators

Generally, in questions related to estimation, we are given the distribution as well
as a sample. It is our job to choose an estimator that can accurately determine the
parameters of the given random variable.

Let us take an example of a Poisson-distributed random variable with parameter
λ with sample X1, X2, . . . , Xn , and we have to come up with an estimator for λ.
Note that for a Poisson distribution, both variance and mean are equal to λ. Hence,
we have two possible estimators:

1.
∑n

i=1 Xi

n .

2.
∑n

i=1(Xi−X̄)2

n−1 .

We can think of several others, but let us stick with these for now. Now, the question
is:Which of these is a better estimator of λ? This question shall be answered in the
following way.

Definition 4.4 (Unbiased Statistic) A statistic T (X) is said to be unbiased for the
function ψ(θ) of unknown parameter θ if E(T (X)) = ψ(θ).

For instance, sample mean X̄ is an unbiased estimator of the population mean μ,
because

E(X̄) = E

(
n∑

i=1

Xi

)
=

n∑

i=1

E(Xi ) = μ.

An estimator that is not unbiased is called biased. The bias, denoted by b(T, ψ), is
given by

b(T, ψ) = Eθ (T (X)) − ψ(θ).

It can be observed that if T (X) is an unbiased estimator of ψ(θ) and g is a linear
or affine function then g(T (X)) is also an unbiased estimator of g(ψ(θ)). Consider
the quantity (T (X) − ψ(θ))2 which might be regarded as a measure of error or loss
involved in using T (X) to estimateψ(θ). The quantity E((T (X) − ψ(θ))2) is called
the mean square error (MSE) of the estimator ψ(θ). Thus, the MSE decomposes as
MSE = Var(T (X)) + b(T, ψ)2. Note that the MSE of an unbiased estimator is
equal to the variance of the estimator.

Definition 4.5 (Locally Minimum Variance Unbiased Estimator (LMVUE))
Let θ0 ∈ Θ and U (θ0) be the class of all unbiased estimators T (X) of θ0 such that
Eθ0(T )2 < ∞. Then, T0 ∈ U (θ0) is called LMVUE at θ0 if
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Eθ0(T0 − θ0)
2 ≤ Eθ0(T − θ0)

2 for all T ∈ U (θ0).

Definition 4.6 (Uniformly Minimum Variance Unbiased Estimator (UMVUE)) Let
U (θ) be the class of all unbiased estimators T (X) of θ ∈ Θ such that
Eθ (T )2 < ∞, for all θ ∈ Θ . Then, T0 ∈ U (θ) is called UMVUE of θ if

Eθ (T0 − θ)2 ≤ Eθ (T − θ)2 for all θ ∈ Θ and every T ∈ U (θ).

Now, we consider an inequality which provides a lower bound on the variance of an
estimator and can be used to show that an unbiased estimator is UMVUE.

Cramér3 and Rao inequality Suppose the family { f (x; θ) : θ ∈ Θ} where Θ is
an open set satisfies the following regularity conditions:

1. The set S where f (x; θ) is nonzero, called support set, is independent of θ . Thus,
S = {x : f (x; θ) > 0} does not depend on θ .

2. For x ∈ S and θ ∈ Θ , the derivative ∂ f (x;θ)

∂θ
exists and is finite.

3. For any statistic S(X) with Eθ |S(X)| < ∞ for all θ , the following holds,

∂

∂θ

∫
S(x) f (x; θ)dx =

∫
S(x)

∂

∂θ
f (x; θ)dx

whenever right-hand side exists.

Let T (X) be a statistic with finite variance such that Eθ (T (X)) = ψ(θ). If

I (θ) = Eθ

(
∂

∂θ
log f (x; θ)

)2

satisfies 0 < I (θ) < ∞, then

VarθT (X) ≥ (ψ ′(θ))2

I (θ)
.

Remark 4.2 1. The quantity I (θ) is known as Fisher information in the random
sample X1, X2, . . . , Xn .

2. I (θ) = nI1(θ) where I1(θ) is Fisher information in X1 and is given by

I1(θ) = Eθ

(
∂

∂θ
log f (X1; θ)

)2

.

3. The Fisher information in X1, I1(θ) can also be given by

3Harald Cramér (1893–1985) was a Swedish mathematician, actuary, and statistician, specializing
in mathematical statistics and probabilistic number theory. John Kingman described him as “one
of the giants of statistical theory.”
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I1(θ) = −E

(
∂2

∂θ2
log f (x1; θ)

)
. (4.16)

4. If Var(T (X)) attains the lower bound, then T (X) is UMVUE for ψ(θ).

Example 4.4 Let X follow Poisson distribution with parameter λ. Find the UMVUE
of λ.

Solution:

I (λ) = Eθ

(
∂
∂θ

log fθ (X)
)2 = n

λ
. Let ψ(λ) = λ. Then, the lower bound is λ

n . Let
T (X) = X̄ , and we have

Var(X̄) = Var

(
n∑

i=1

Xi

)
= λ

n
.

Since Var(X̄) attains the lower bound, hence X̄ is UMVUE of λ.

Let us get back to our question: Which of these is an efficient estimator?

Definition 4.7 (Relative Efficient Estimator) Let T1(X) and T2(X) be unbiased esti-
mators of θ , i.e., E(T1(X)) = θ = E(T2(X)). Then, the relative efficiency of esti-
mators T1(X) and T2(X) is the ratio of their variances, i.e.,

Var(T1(X))

Var(T2(X))
.

We say that T1(X) is relatively more efficient as compared to T2(X) if the ratio is
less than 1, i.e., if Var(T1(X)) ≤ Var(T2(X)).

For instance, when X ∼ P(λ) and λ is unknown, the sample mean and the sample
variance are unbiased estimators. Since, Var(X̄) ≤ Var(s2), we conclude that X̄ is
a relatively more efficient estimator.

Example 4.5 Suppose X ∼ N (μ, σ 2) where σ is known. Let X1, X2, . . . , Xn be a
random sample of size n. Prove that μ1 = X̄ is the relatively efficient estimator of μ

with μ2 = X2 and μ3 = X2+X̄
2 .

Solution:

We can easily check
E(μ1) = E(μ2) = E(μ3) = μ.

Hence, all three estimators are unbiased. Note that unbiasedness is not a property
that helps us choose between estimators. To do this, we must examine mean square
error. Now, we have

Var(μ1) = σ 2/n, Var(μ2) = σ 2/n + σ 2

4
, Var(μ3) = σ 2.
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Thus, X̄ is the relatively efficient estimator of μ.

Definition 4.8 (Efficient Estimator) Let T (X) be an unbiased estimator ofψ(θ), i.e.,
E(T (X)) = ψ(θ). Then, T (X) is said to be an efficient estimator of ψ(θ), ∀ θ ∈ Θ

if its variance archives equality in the Cramer–Rao lower bound, i.e.,

Var(T (X)) = (ψ ′(θ))2

I (θ)
(4.17)

where

I (θ) = Eθ

(
∂

∂θ
log f (x; θ)

)2

. (4.18)

Note that an efficient estimator is always an UMVUE, but the converse need not
be true. The reason for this is fairly intuitive. The variance of a random variable
measures the variability of the random variable about its expected value. For if the
variance is small, then the value of the random variable tends to be close to its mean,
which in the case of an unbiased estimate means close to the value of the parameter.

Example 4.6 Let X be a normally distributed randomvariablewith finite expectation
μ and variance σ 2. Let X̄ be the sample mean. Show that X̄ is an efficient estimator
of μ.

Solution: First, we can easily say that X̄ is unbiased as

E(X̄) = E

⎛

⎜⎜⎜⎜⎝

n∑

i=1

Xi

n

⎞

⎟⎟⎟⎟⎠
= μ. (4.19)

Similarly, variance of X̄ is given by

Var(X̄) = σ 2

n
.

The CRLB for X̄ is σ 2

n . Hence, X̄ is an efficient estimator of θ .

How to distinguish a good estimator from a bad one? Ideally, as we obtain more
observations, we have more information and our estimator should become more
accurate. This is not a statement about a single estimator, but one about a sequence
of estimators T1(X), T2(X), . . ..

Definition 4.9 (Consistent Estimator) Let {Tn(X), n = 1, 2, . . .} be a sequence of
estimators based on a sample (X1, X2, . . . , Xn) of the parameter θ .We say that Tn(X)

is a consistent estimator of θ if for every ε > 0
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lim
n→+∞ P(|T̂n − θ | > ε) = 0. (4.20)

This probability is really hard to compute from sample data. Using Chebyshev’s
inequality, we can simplify the expression and prove that, for a consistent estimator,
lim
n→∞ E(Tn(X)) = θ and lim

n→∞ Var(Tn(X)) = 0. Thus, we can be sure of consistency

provided lim
n→∞ E(Tn(X)) = θ and lim

n→∞ Var(Tn(X)) = 0.

Example 4.7 Let X be a random variable with finite expectation μ and variance σ 2.
Let X̄ be the sample mean, based on a random sample of size n. Prove that X̄ is an
unbiased and consistent estimator of μ.

Solution:

First, we can easily say that:

E(X̄) = E

⎛

⎜⎜⎜⎜⎝

n∑

i=1

Xi

n

⎞

⎟⎟⎟⎟⎠
=

E

(
n∑

i=1

Xi

)

n
= nμ

n
= μ. (4.21)

Thus, the estimator is unbiased. Similarly, variance of X̄ is given by

Var(X̄) = σ 2

n
. (4.22)

Note that limn→∞ Var(X̄) = 0, and thus sample mean is a consistent and unbiased
estimator.

Definition 4.10 (Sufficient Estimator) Let X = (X1,X2, . . . ,Xn) be a sample from
{F(x; θ) : θ ∈ Θ}. A statistic T = T (X) is sufficient for θ or for the family of
distributions {F(x; θ) : θ ∈ Θ} if and only if the conditional distribution of X , given
T = t , does not depend on θ .

Also, it can be shown that a statistic T (X) is sufficient for family of distributions
{F(x; θ) : θ ∈ Θ} if and only if one of the following conditions holds:

1. P(X1, X2, . . . , Xn | T (X)) is independent of θ .
2. Condition expectation E(Z/T ) is independent of θ for every random variable Z

such that E(Z) exists.
3. The conditional distribution of every random variable Z given T = t , which

always exists, is independent of θ .

Example 4.8 Consider a random sample X1, X2, . . . , Xn from Bernoulli’s distribu-

tion B(1, p). Prove that
n∑

i=1

Xi is a sufficient estimator for p.



118 4 Sampling Distributions and Estimation

Solution:

Let T (X1, X2, . . . , Xn) =
n∑

i=1

Xi ; then if
n∑

i=1

xi = x , we have

P

(
X1 = x1, X2 = x2, . . . , Xn = xn/

n∑

i=1

Xi = x

)
=

P

(
X1 = x1, X2 = x2, . . . , Xn = xn ,

n∑

i=1

Xi = x

)

P

(
n∑

i=1

Xi = x

)

and 0 otherwise. Thus, we have for
n∑

i=1

xi = x ,

P

(
X1 = x1, X2 = x2, . . . , Xn = xn/

n∑

i=1

Xi = x

)
= p

n∑

i=1

xi
(1 − p)n−∑n

i=1 xi
( n
x

)
px (1 − p)n−x

= 1( n
x

)

which is independent of unknown parameter p. Hence,
n∑

i=1

Xi is sufficient estimator

for p.

Now, we present the result for sufficient statistic in case of discrete random variables
as a theorem. Its proof is beyond the scope of this text. The interested readers may
refer to Rohatgi and Saleh (2015).

Theorem:Factorization Theorem Let (X1, X2, . . . , Xn) be discrete random vari-
ables with joint PMF p(x1, x2, . . . , xn; θ), θ ∈ Θ . Then, T (X1, X2 . . . , Xn) is suf-
ficient for θ if and only if we have

p(x1, x2, . . . , xn; θ) = h(x1, x2, . . . , xn)g(T (x1, x2, . . . , xn, θ))

where h is a nonnegative function of x1, x2, . . . , xn and is independent of θ , and g
is a nonnegative non-constant function of θ and T (X1, X2, . . . , Xn).

Now, using factorization theorem we conclude that
n∑

i=1

Xi is sufficient statistics

for p without using conditional probability argument which is used in Example4.8.

P(X1 = x1, X2 = x2, . . . , Xn = xn) = p

n∑

i=1

xi
(1 − p)

n−
n∑

i=1

xi
.
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Takeh(x1, x2, . . . , xn) = 1and g(x1, x2, . . . , xn, p) = (1 − p)n( p
1−p )

n∑

i=1

xi
.Hence,

we observe that
n∑

i=1

Xi is sufficient.

Example 4.9 Suppose that X1, . . . , Xn form a random sample from a Poisson distri-

bution with unknownmeanμ, (μ > 0). Prove that T =
n∑

i=1

Xi is a sufficient statistic

for μ.

Solution:

For every set of nonnegative integers x1, . . . , xn , the joint PMF fn(x;μ)of X1, . . . , Xn

is as follows:

fn(x;μ) =
n∏

i=1

e−μμxi

xi ! =
(

n∏

i=1

1

xi !

)
e−nμμ

n∑

i=1

xi
.

It can be seen that fn(x |μ) has been expressed as the product of a function that does
not depend on μ and a function that depends on μ but depends on the observed

vector x only through the value of
n∑

i=1

xi . By factorization theorem, it follows that

T =
n∑

i=1

Xi is a sufficient statistic for μ.

Exponential Family of Probability Distribution

Astudyabout the properties of someprobability distributions gives that the dimension
of sufficient statistics is same as that of the parameter space no matter what is the size
of the sample. Such an observation led to the development of an important family of
distributions known as the exponential family of probability distributions. Some of
the common distributions from exponential family include the binomial, the normal,
the gamma, and the Poisson distribution.

One-parameter members of the exponential family have PDF or PMF of the form

f (x; θ) = exp [c(θ)T (x) + d(θ) + S(x)] .

Suppose that X1, . . . , Xn are i.i.d. samples from amember of the exponential family,
then the joint PDF is
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f (x; θ) =
n∏

i=1

exp [c(θ)T (xi ) + d(θ) + S(xi )] (4.23)

= exp

[
c(θ)

n∑

i=1

T (xi ) + nd(θ)

]
exp

[
n∑

i=1

S(xi )

]
. (4.24)

From this result, it is apparent by the factorization theorem that
n∑

i=1

T (Xi ) is a

sufficient statistic.
For example, the joint PMF of Bernoulli distribution is

P(X = x) =
n∏

i=1

θ x
i (1 − θ)1−xi for xi = 0 or x=1

= exp

[
log

(
θ

1 − θ

) n∑

i=1

xi + log(1 − θ)

]
. (4.25)

It can be seen that this is a member of the exponential family with T (x) = x , and we

can also see that
n∑

i=1

Xi is a sufficient statistic, which is the same as that obtained in

Example4.8.

Remark 4.3 1. Any one-to-one function of a sufficient statistics is also a suffi-
cient statistics. Hence, there are numerous sufficient statistics in a population
distribution.

Definition 4.11 (Minimal Sufficient Statistic) A sufficient statistics T (X) is called
a minimal sufficient statistic if for any other sufficient statistic T

′
(X), T (X) is a

function of T
′
(X).

Definition 4.12 (Complete Statistic) Let f (x; θ) : θ ∈ Θ} be a family of PDFs (or
PMFs). We say that this family is complete if Eθg(T ) = 0 for all θ ∈ Θ implies that
Pθ {g(T ) = 0} = 1 for all θ ∈ Θ where g is a Borel measurable function. A statistic
T (X) is said to be complete if the family of distributions of T is complete.

A statistic T (X1, X2, . . . , Xn) is said to be complete if family of distributions of T
is complete.

Example 4.10 Let X1, X2, . . . , Xn be a random sample from Bernoulli’s B(1, p).

Prove that
n∑

i=1

Xi is complete statistic.

Solution: Consider a statistic T (X) =
n∑

i=1

Xi . It is a sufficient statistic as shown

in Example4.9. The family of distribution of T (X) is binomial family {B(n, p),
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0 < p < 1} since sum of independent Bernoulli random variables is a binomial
random variable. Consider

Ep(g(T )) =
n∑

k=0

g(k)
(n
k

)
pk(1 − p)n−k = 0 for all p ∈ (0, 1)

which is same as

(1 − p)n
n∑

k=0

g(k)
(n
k

)
s

(
p

1 − p

)k

= 0 ∀ 0 < p < 1

which is a polynomial in (
p

1−p ) with uncountable many roots; hence, the coefficients
must vanish. It follows that

g(k) = 0 for all k = 0, 1, . . . , n.

Therefore,
n∑

i=1

Xi is a complete statistic.

Definition 4.13 (Ancillary Statistic) A statistic A(X) is said to be ancillary if its
distribution does not depend on the underlying model parameter θ .

The definition implies that an ancillary statistic alone contains no information about
θ . But these statistics are important because when used in conjunction with another
statistic, they may contain valuable information for inferences about θ . Some exam-
ples of ancillary statistic are range which is given by X(n) − X(1), X1 − X̄ . Now, we
present an important result which connects complete sufficient statistics and ancil-
lary statistics as following two theorems without proof. Its proof is beyond the scope
of this text. The interested readers may refer to Rohatgi and Saleh (2015).

Theorem 4.1 (Lehmann–Scheffe Theorem) If T (X) is a complete sufficient statistic
and W (X) is an unbiased estimator of ψ(θ), then φ(T ) = E(W/T ) is an UMVUE
ofψ(θ). Furthermore, φ(T )is the unique UMVUE in the sense that if T ∗ is any other
UMVUE, then Pθ (φ(T ) = T ∗) = 1 for all θ .

Corollary: IfU is a complete sufficient statistics for θ and g(U ), a function ofU , is
such that E(g(U )) = ψ(θ), then g(U ) is a UMVUE for ψ(θ).

Remark 4.4 1. The above theorem confirms that the estimators based on sufficient
statistics are more accurate in the sense that they have smaller variances.

2. Let T and S be two sufficient statistics for θ such that S is a function of T , i.e.,
S = g(T ), and let φ̂(T ) be an unbiased estimator of φ(θ) based on T . Then,

φ̂(S) = E(φ̂(T̂ )/S)

is also an unbiased estimator of φ(θ) with
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Var(φ̂(S)) ≤ Var(φ̂(T ))

with equality if and only if φ̂(T ) is already a function of S.

Example 4.11 Consider Example4.10, and find a UMVUE for the parameter p and
for p2.

Solution:

We already know that T =
n∑

i=1

Xi is a complete sufficient statistics and T ∼ B(n, p).

Also, it is known that X1 is an unbiased estimator of p. By Lehmann–Scheffe
Theorem, we have E(X1/T ) = X̄ which is the UMVUE for θ . As we know that
UMVUE, if exists, will be a function of the complete sufficient statistics, T , only.
Therefore, to find UMVUE of p2, we start with X̄2 = T 2

n2 . Now,

E(X̄2) = Var(X̄) + (E(X̄))2 = p(1 − p)

n
+ p2 = p

n
+ p2

(
1 − 1

n

)
.

Consider
φ(t) := 1

n(n − 1)
(t2 − t).

Then, E(φ(T )) = p2. Hence, by corollary to Lehmann–Scheffe Theorem, we have
φ(T ) which is the UMVUE for p2.

Theorem 4.2 (Basu’s Theorem) If T (X) is a complete sufficient statistic for θ , then
any ancillary statistic S(X) is independent of T (X).

Note that converse of Basu’s theorem is not true; that is, a statistic which is indepen-
dent of every ancillary statistic need not be complete.

Example 4.12 Let (X1, X2, . . . , Xn) denote a random sample of size n from a dis-
tribution that is N (μ, σ 2). Prove that the sample mean X̄ and sample variance σ 2

are independent.

Solution:

We know that for every known σ 2 the mean X̄ of the sample is a complete
sufficient statistics for the parameter μ,−∞ < μ < ∞. Consider the statistics

s2 = 1
n−1

n∑

i=1

(Xi − X̄)2 which is location invariant. Thus, s2 must have a distribu-

tion that does not depend upon μ; hence by Basu’s Theorem, s2 and X̄ , the complete
sufficient statistics for μ, are independent.

Example 4.13 The data obtained from a Geiger counter experiment are given in
Table4.2. In the given table, k is the number of particles observed in 1

8 th of a minute,
while nk is the number of emissions in which k particles were observed. Assuming
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Table 4.2 Data for Example4.13

k 0 1 2 3 4 5 6 7 8 9 10 11 Total

nk 57 203 383 525 532 408 273 139 49 27 10 6 2612

the distribution Poisson, estimate the parameter λ. It is also given to you that λ is
defined in such a way that

P(X = k) = e−(1/8)λ
(
1
8λ
)k

k! , k = 0, 1, 2, . . . (4.26)

Let us find an estimator for λ. As the samples were noted for an eighth of a minute,
we can simply take the sample mean of the data and multiply it by 8. Thus, λ̂ = 8X̄ .
Now, the sample mean would be simply the total number of particles(0*number of
emissions with 0 particles+1*number of emissions with 1 particle and so on) divided
by total number of emissions.

X̄ =

11∑

k=0

knk

11∑

k=0

nk

= 3.87 particles.

Multiply by 8, and we get λ̂ = 30.96.

Example 4.14 Consider the following two-parameter normal family

f (x;μ, σ) = 1√
2πσ

e− 1
2

(x−μ)2

σ2 , − ∞ < x < ∞,−∞ < μ < ∞, σ > 0

Find the consistent estimators for μ and σ .

Solution:

We know that E(X̄) = μ and E(X̄2) = μ2 + σ . Clearly

x̄n = x1 + x2 + · · · + xn
n

and tn = x21 + x22 + · · · + x2n
n

are consistent for μ and μ2 + σ . Then, x̄n and un = tn − x̄2n are consistent for μ

and σ .

Definition 4.14 (Asymptotically Most Efficient Estimator) Often, we deal with esti-
mators which are not most efficient but their efficiency satisfies the condition
limn→∞ θ̂ = 1 and they are at least asymptotically most efficient estimates.
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Table 4.3 Data

Claims 0 1 2 3 4 5

Frequency 7 12 19 18 11 7

From the practical point of view, they aremost efficient estimates from large samples.
For example, let X ∼ N (μ, σ 2). ConsiderU = ns2

n−1 ; then,U is an unbiased estimator,
but it is neither sufficient nor most efficient. But for large sample, we have

lim
n→∞ e = lim

n→∞
n

n − 1
= 1.

Hence, U is asymptotically most efficient estimator.

4.4 Methods of Point Estimation

Sometimes, we need to find an unknown parameter of the population. As an example,
consider monthly claims arriving from an insurance portfolio and the data are shown
in Table4.3.

We know that Poisson distribution with parameter λ is one of the most obvious
choices for modeling number of claims. Then again, most importantly we need to
answer “What should be the value of the parameter λ for modeling this problem?”
This chapter gives two methods to estimate the value of the unknown parameter
based on the information provided by a given sample.

4.4.1 Method of Moments

The first method is the method of moments in which we simply equate sample
moments with their population counterparts and solve for the parameter(s) we need
to estimate. The other method known as the method of maximum likelihood involves
differentiation to obtain the parameter value maximizing the probability of obtaining
the given sample. There are other methods for estimating the population parameter
from a given sample, but in this chapter we will only discuss above-mentioned
methods. An important thing to note is that these two methods might not always give
the same value for the parameter. The expression “point estimation” refers to the
problem of finding a single number to estimate the parameter value. This contrasts
with “confidence interval estimation” where we wish to find a range of possible
values, which we will discuss in the next section.
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One-Parameter Case

This is the simplest case in which we equate populationmean, E(X) to sample mean,
and solve for the parameter to be estimated, i.e.,

E[X ] = 1

n

n∑

i=1

xi .

Note that for some populations the mean does not involve the parameter, such as
the uniform distribution defined over (−θ, θ) or the normal N (0, σ 2), in which case
a higher-order moment must be used. However, such cases are rarely of practical
importance.

Consider a uniform distributed random variable X on the interval (−θ, θ). As we
can see E(X) = (1/2)(−θ + θ) = 0. Equating this to the sample mean is futile as
it does not consider any term involving our parameter θ . Instead, we go for second
moment or simply variance and obtain the value for our parameter, i.e., Var(X) =
[θ − (−θ)]2/12 = θ2/3, as this term involves parameter θ , equating this to sample
variance will give us a value for our parameter.

It is very important to highlight that estimate and estimators are two different
things. “Estimate” is a numerical value calculated from a formula. On the other hand,
“estimator” is a function that maps the sample space to a set of sample estimates.
As a convention, we write the estimator in upper case, as it is essentially a random
variable and thus will have a sampling distribution. Estimate being just a numerical
value is written in lower case.

Two-Parameter Case

Now, we need to estimate two parameters and hence two equations are required. The
most natural choice is to equate first- and second-order moments of the population
with their sample counterparts to obtain two equations and solve this pair of equations
to find the solution for our parameters. It is somewhat easier to work with variance
instead of second-order moment. Actually working with both will lead us to exactly
same answers which is also true for other higher-order moments about the mean
(skewness, kurtosis, etc) being used instead of higher-order moments about zero
(E[X3], E[X4], etc).

The first-order equation is the same as the one-parameter case:

E(X) = 1

n

n∑

i=1

xi .

The second equation is:

E(X2) = 1

n

n∑

i=1

x2i
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or equivalently

Var(X) = 1

n

n∑

i=1

(xi − x̄)2 = 1

n

n∑

i=1

x2i − x̄2.

It is important to note that while calculating the sample variance s2 we use (n − 1)
as divisor instead of n and thus our equation changes to

Var(X) = 1

n − 1

n∑

i=1

(xi − x̄)2 = 1

n − 1

n∑

i=1

x2i − x̄2.

Obviously using this definition will give us a different result, but as the sample size
increases the differences fade out. This definition is better as (s2) is an unbiased
estimator of population variance.

Remark 4.5 1. The method of moments is the oldest method of deriving point
estimators. It almost always produces some asymptotically unbiased estimators,
although they may not be the best estimators.

2. In some cases, however, a moment estimator does not exist.

4.4.2 Method of Maximum Likelihood

The most important aspect of parametric estimation is the method of maximum like-
lihood which is simple to state, universal, and asymptotically optimal. The method
of maximum likelihood is widely regarded as the best general method of finding
estimators. “Asymptotic” here just means when the samples are very large.

One-Parameter Case

The most important stage in applying the method is that of writing down the likeli-
hood:

L(x; θ) =
n∏

i=1

f (xi ; θ); θ ∈ Θ

for a random sample x1, x2, ...., xn from a population with density or probability
function f (x; θ).

∏
means product, so

n∏

i=1

f (xi ; θ) means f (x1) × f (x2) × · · · f (xn).
The above expression simplymeans that the likelihood function is simply the product
of the PDFs of the sample values. The notation f (xi ; θ) is given just to emphasize
that the PDF depends on the value of θ , which we are trying to estimate.
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The likelihood is the probability of observing the sample in the discrete case and
is proportional to the probability of observing values in the neighborhood of the
sample in the continuous case.

Notice that the likelihood function is a function of the unknown parameter θ . Thus,
different values of θ would give different values for the likelihood. The maximum
likelihood approach is to find the value of θ that would have been most likely to give
us the particular sample we got. In other words, we need to find the value of θ that
maximizes the likelihood function.

For a continuous distribution, the probability of getting any exact value is zero.
However, we have the following for infinitesimally small ε > 0

P(x − ε < X ≤ x + ε) ≈
∫ x+ε

x−ε

f (t).dt � 2ε f (x).

In most cases, taking logarithms greatly simplifies the determination of the maxi-
mum likelihood estimator (MLE) θ̂ . Differentiating the likelihood or log-likelihood
with respect to the parameter and setting the derivative to zero give the maximum
likelihood estimator for the parameter.

∂ ln L(x; θ)

∂θ
=

n∑

i=1

∂ ln L(xi ; θ)

∂θ
= 0.

It is necessary to check, either formally or through simple logic, that the turning point
is a maximum. Generally, the likelihood starts at zero, finishes at or tends to zero,
and is nonnegative. Therefore, if there is one turning point, it must be a maximum.
The formal approach would be to check that the second derivative is negative.

One can observe that while writing the log-likelihood function, any term that
does not contain the parameter (l in this case) can be treated as a constant since while
differentiating the log-likelihood function the derivative will be zero for that term.
Furthermore, MLEs satisfy the invariance property in the sense that if θ̂ is the MLE
of θ then g(θ) is MLE of the function g(θ̂).

Example 4.15 Let (X1, X2, . . . , Xn) be a random sample from the exponential dis-
tribution with PDF

f (x; λ) = λe−λx , 0 < x < ∞, λ ∈ (0,∞).

Find the maximum likelihood estimator for λ.

Solution:

The likelihood function is given as follows.

L(λ) = L(λ; x1, x2, . . . , xn) = λne

−λ

n∑

i=1

xi
, 0 < λ < ∞
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ln L(λ) = n ln λ − λ

n∑

i=1

xi .

Thus,
∂ ln L(λ)

∂λ
= n

λ
−

n∑

i=1

xi = 0.

The solution of this equation for λ is

1

λ
= 1

n

n∑

i=1

xi = x̄ .

At λ = 1
x̄ , ln L(λ) has maximum. Thus, the maximum likelihood estimator for λ is

λ̂ = 1
X̄
, i.e., 1

λ̂
= X̄ .

Two-Parameter Case

In this case, to maximize the log-likelihood function with respect to two parameters,
one needs to use the concept of maximizing a function of two variables. Although
this is straightforward method in principle, in some of the cases the solution of the
resulting equations may be complicated requiring an iterative or numerical solution.
The idea is to partially differentiate the log-likelihood function with respect to each
parameter and equate each of them to zero, and the following resulting system of
simultaneous equation is solved.

∂ ln L(x; θ1, θ2)

∂θ j
=

n∑

i=1

∂ ln L(xi ; θ1, θ2)

∂θ j
; j = 1, 2.

Hence, in summary, the steps for finding the maximum likelihood estimator in
straightforward cases are:

1. Obtain the likelihood function, L , and write the simplified expression for log-
likelihood function ln L .

2. Partially differentiate ln L with respect to each parameter that is to be estimated.
3. Equate each of the partial derivatives to zero, and obtain the system of simulta-

neous equations.
4. Solve these equations to obtain the MLE of the unknown parameters.

Example 4.16 Consider the following two-parameter normal family with PDF

f (x;μ, σ) = 1√
2πσ

e− 1
2

(x−μ)2

σ2 , − ∞ < x < ∞,−∞ < μ < ∞, σ > 0.

Find the MLE for μ and σ 2
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Solution:

We have

ln L = −n

2
ln(2π) − n

2
ln(σ 2) − 1

2σ 2

n∑

i=1

(xi − μ)2.

Partially differentiating with respect to μ and σ 2, we have the following likelihood
equations:

∂ ln L

∂μ
= 1

σ 2

n∑

i=1

(xi − μ)

∂ ln L

∂σ 2
= − n

2σ 2
+ 1

2σ 4

n∑

i=1

(xi − μ)2

Solving the likelihood equations by equating them to zero, we get

μ̂ = 1

n

n∑

i=1

xi

σ̂ 2 = 1

n

n∑

i=1

(xi − x̄)2

i.e., the sample mean and the sample variance are the MLE forμ and σ , respectively.
Note that the MLE of σ 2 differs from the sample variance s2 in that the denominator
is n rather than that n − 1. However, for large n, these two estimators of σ 2 will be
approximately equal.

Example 4.17 Find the MLE for μ for the family of Cauchy distribution

f (x;μ) = 1

2π(1 + (x − μ)2)
, − ∞ < x < ∞,−∞ < μ < ∞

Solution:

The likelihood equation is as follows.

n∑

i=1

xi − μ

1 + (xi − μ)2
= 0

which cannot be solved explicitly. The method still works, but the estimator can only
be computed numerically.
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4.4.3 Asymptotic Distribution of MLEs

Given a random sample of size n from a distribution with density (or probability
function in the discrete case) f (x; θ), the maximum likelihood estimator θ̂ is such
that, for large n, θ̂ is approximately normal, and is unbiased with variance given by
the Cramer–Rao lower bound (CRLB), i.e.,

θ̂ ∼ N (θ,CRLB)

where

CRLB = 1

nE
{[

∂
∂θ

ln f (x; θ)
]2} .

The MLE can therefore be called asymptotically efficient in that, for large n, it is
unbiased with a variance equal to the lowest possible value of unbiased estimators.
The quantity I (θ) = E

[
∂
∂θ

ln f (x; θ)
]2

in the denominator is known as information
function.

This is potentially a very useful result as it provides an approximate distribution
for the MLE when the true sampling distribution may be unknown or impossible to
determine easily and hence may be used to obtain approximate confidence intervals
(which we will discuss in the next section).

The result holds under very general conditions with only one major exclusion: It
does not apply in cases where the range of the distribution involves the parameter,
such as the uniform distribution. This is due to a discontinuity, so the derivative in
the formula does not make sense.

The second formula is normally easier to work (as we would have calculated the
second derivative of the log-likelihood when checking that we get a maximum).

Now, we will briefly discuss minimum variance unbiased estimator (MVUE). It
is an unbiased estimator having lower variance than any other unbiased estimator for
all the possible values of the parameter. An efficient estimator is also the minimum
variance unbiased estimator because an efficient estimator attains the equality in the
Cramer–Rao inequality for all values of the parameter. In other words, an efficient
estimator attains the minimum variance for all possible values of the parameters.
However, the MVUE, even if it exists, is not necessarily an efficient estimator since
“minimum” does not imply that the equality holds in the Cramer–Rao inequality. In
conclusion, an efficient estimator need not exist, but if it exists, it is the MVUE.

Example 4.18 Consider the family of normal distributions with the following PDF.

f (x;μ) = 1√
2π

e− (x−μ)2

2 , − ∞ < x < ∞,−∞ < μ < ∞.
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Solution:

The sample mean X̄ is clearly an unbiased estimator of μ. Its variance is 1
n . Now,

∂ ln L

∂μ
= x − μ.

The information function I (μ) is calculated as 1. Hence, the Cramer–Rao lower
bound is attained.

4.5 Interval Estimation

Often in problems of statistical inference, the experimenter is interested in finding
an estimate of a population parameter lying in an interval. Such an estimate is known
as interval estimation of a parameter. Interval estimates are preferred over point
estimates because they also indicate the precision and accuracy in estimation.

Most common point estimators are the sample mean and the sample variance
because they give a point estimate to the unknown parameter instead of giving a
range of values. However, when a sample is drawn it is highly unlikely that the value
of a point estimate θ̂ is equal to the true value of the unknown parameter θ . In fact, for
a continuous random variable X , it is generally the case that P(θ̂ = θ) = 0 for any
sample of finite size. Therefore, rather than estimating the exact value of a parameter,
it is better to simply estimate the upper and lower bounds of the parameter over an
appropriate probability. That is, we can say that the parameter lies between two
values with a certain probability. This is called interval estimation, and the interval
obtained is known as confidence interval. For example, we can say that the mean
of any variable lies between 2 and 3 with a probability 0.9. In this chapter, we will
derive the confidence interval for the unknown parameter of a normal population
when the sample sizes are small and large.

4.5.1 Confidence Interval

Theorem 4.3 If x̄ is the mean of a sample of size n from a normally distributed
population with known variance σ 2 and unknown mean μ, then the (1 − α)100%
confidence interval for the population mean is given by

x̄ − z α
2

σ√
n

≤ μ ≤ x̄ + z α
2

σ√
n
. (4.27)

where z α
2
is such that

P
(
Z > z α

2

) = α

2
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Fig. 4.4 Tail probabilities
for standard normal
distribution

for the standard normal random variable Z.

Proof Consider the statistic

X̄ =

n∑

i=1

Xi

n .

We know that if Xi∼N (μ, σ 2), then X̄∼N (μ, σ 2

n ). Hence,

X̄ − μ
σ√
n

∼ N (0, 1).

For a given α, find a point z α
2
(Fig. 4.4) such that

P
(
Z>z α

2

) = α

2
.

⇒ P

(
−z α

2
≤ X̄ − μ

σ√
n

≤ z α
2

)
= 1 − α

⇒ P

(
X̄ − z α

2
σ√
n

≤ μ ≤ X̄ + z α
2
σ√
n

)
= 1 − α.

The interval is known as (1 − α)% confidence interval.

What do we mean when we say that the probability is (1 − α)? It simply means
that, if we take 100 samples, from the same population, we expect 100(1 − α) times
that the confidence interval will contain the unknown parameter.

Remark 4.6 In case the population variance is not given, but the sample variance
is given, we have to replace normal distribution with student’s t-distribution. The
confidence interval becomes
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x̄ − tn−1, α
2

s√
n

< μ < x̄ + tn−1, α
2

s√
n

where
P
(
t > tn−1, α

2

) = α

2
.

Example 4.19 The average return of a risky portfolio is 10.5% per year with a stan-
dard deviation of 18%. If returns are assumed to be approximately normal, what is
the 95% confidence interval for portfolio return next year?

Solution:

Here, population mean μ and population variance σ are 10.5 and 18%, respectively.
Thus, the 95% confidence interval for the return, R, is given as

10.5 ± 1.96(18) = (−24.78, 45.78%). (4.28)

which can be interpreted as:

P(−24.78 < R < 45.78) = 0.95. (4.29)

In other words, one can say the annual return is expected to be within this interval
95% of the time or 95 out of 100 days.

Example 4.20 Consider a queuing system which describes the number of ongoing
telephone calls in a particular telephone exchange. Determine a 95% confidence
interval for the average talk time (in seconds) of the customers in the system if a
random selection of 15 customers yielded the following data

54, 53, 58, 72, 49, 92, 70, 71, 104, 48, 65, 72, 65, 70, 85.

Solution:

Here, since the population variance is not given, we will use the sample variance to
estimate the population variance. Thus, we will be using the student’s t-distribution.
From the given data, we get

x̄ = 68.53, s = 15.82.

From TableA.10 in Appendix, we have t14,0.025 = 2.145. Hence, the 95% confidence
interval is (

68.53 − 2.145 × 15.82√
15

, 68.53 + 2.145 × 15.82√
15

)

which reduces to (59.77, 77.29) .
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Example 4.21 Let X1, X2, . . ., X11 be a random sample of size 11 from a normal

distribution with unknown mean μ and variance σ 2 = 9.9. If
11∑

i=1

xi = 132, then for

what value of the constant k is (12 − k
√
0.9, 12 + k

√
0.9) a 90% confidence interval

for μ?

Solution:

The 90% confidence interval for μ when the variance is given is

(
x̄ − σ√

n
, x̄ + σ√

n

)
.

Thus, we need to find x̄ ,

√
σ 2

n
and z α

2
corresponding 1 − α = 0.9. Hence,

x̄ =

11∑

i=1

xi

11
= 132

11
= 12

√
σ 2

n
=
√
9.9

11
= √

0.9.

We know that z0.05 = 1.64 (from TableA.7 in Appendix). Hence, the confidence
interval for μ at 90% confidence level is

(12 − (1.64)
√
0.9, 12 + (1.64)

√
0.9).

Comparing this interval with the given interval, we get k = 1.64 and the correspond-
ing 90% confidence interval is (10.444, 13.556).

Example 4.22 The mean and standard deviation for the quality grade point averages
of a random sample of 36 college seniors are given to be 2.6 and 0.3, respectively.
Find the 95 and 99% confidence intervals for the mean of the entire senior class.

Solution:

The point estimate of μ is x̄ = 2.6. Since the sample size is large, the σ can be
approximated by s = 0.3. The z value leaving an area of 0.025 to the right and
therefore an area of 0.975 to the left is z0.025 = 1.96 (see TableA.7 in Appendix).
Hence, the 95% confidence interval is

2.6 − 1.96

(
0.3√
36

)
< μ < 2.6 + 1.96

(
0.3√
36

)

which reduces to 2.50 < μ < 2.70. To find a 99% confidence interval, we find the z
value z0.005 = 2.575, and the 99% confidence interval is

2.6 − 2.575

(
0.3√
36

)
< μ < 2.6 + 2.575

(
0.3√
36

)
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which reduces to
2.47 < μ < 2.73.

Thus, we see that a longer interval is required to estimate μ with a higher degree of
accuracy. The shortest length of this confidence interval is 2zα/2

σ√
n
.

Difference Between the Means of Two Populations

Now, suppose we wish to determine confidence intervals for the difference of means
of two populations, N

(
μ1, σ

2
1

)
and N

(
μ2, σ

2
2

)
. It is given that

X̄1 ∼ N

(
μ1,

σ 2
1

n1

)
, X̄2 ∼ N

(
μ2,

σ 2
2

n2

)
.

⇒ X̄1 − X̄2 ∼ N

(
μ1 − μ2,

σ 2
1

n1
+ σ 2

2

n2

)

⇒ X̄1 − X̄2 ∼ N

(
μ1 − μ2,

σ 2
1 n2 + σ 2

2 n1
n1n2

)
.

Hence, the confidence interval for the difference between μ1 and μ2 is given by

x̄2 − x̄1 − z α
2

√
σ 2
1

n1
+ σ 2

2

n2
< μ1 − μ2 < x̄2 − x̄1 + z α

2

√
σ 2
1

n1
+ σ 2

2

n2
.

The above inequality is not useful if we do not know the population variances. Then,

we use another quantity, sp, where s2p = (n1−1)s21+(n2−1)s22
n1+n2−2 , which is nothing but the

weighted mean of the individual sample variance called pooled variance. Hence, the
resulting expression changes to

x̄2 − x̄1 − t α
2 ,n1+n2−2sp

√
1

n1
+ 1

n2
< μ1 − μ2 < x̄2 − x̄1 + t α

2 ,n1+n2−2sp

√
1

n1
+ 1

n2
.

Example 4.23 In sampling from a nonnormal distribution with a variance of 25, how
large must the sample size be so that the length of a 95% confidence interval for the
mean is 1.96?

Solution: The confidence interval when the sample is taken from a normal population
with a variance of 25 is (

x̄ − σ√
n
, x + σ√

n

)
.

Thus, the length of the confidence interval is

l = 2z α
2

√
σ 2

n
= 2z0.025

√
25

n
= 2(1.96)

√
25

n
.
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But, we are given that the length of the confidence interval is l = 1.96. Thus,

1.96 = 2(1.96)

√
25

n

⇒ n = 100.

Hence, the sample size should be 100 so that the length of the 95%confidence interval
will be 1.96.

Theorem 4.4 Let s2 be the value of sample variance based on a random sample of
size n from a normally distributed population. A (1 − α)100% confidence interval
for the population variance is given by

(n − 1)s2

χ2
α
2 ,n−1

< σ 2 <
(n − 1)s2

χ2
1− α

2 ,n−1

. (4.30)

Proof Consider the following statistic

V = (n − 1)
s2

σ 2
.

Note that (n − 1) s2

σ 2 follows χ2
n−1 distribution.

⇒ P
(
χ2
1− α

2 ,n−1 < V < χ2
α
2 ,n−1

)
= 1 − α

⇒ P

(
χ2
1− α

2 ,n−1 < (n − 1)
s2

σ 2
< χ2

α
2 ,n−1

)
= 1 − α

⇒ P

(
χ2
1− α

2 ,n−1

(n − 1)s2
<

1

σ 2
<

χ2
α
2 ,n−1

(n − 1)s2

)
= 1 − α

⇒ P

(
(n − 1)s2

χ2
1− α

2 ,n−1

< σ 2 <
(n − 1)s2

χ2
α
2 ,n−1

)
= 1 − α.

Example 4.24 Let X1, X2, . . . , X13 be a random sample from a normal distribution.

If
13∑

i=1

xi = 246.61 and
13∑

i=1

x2i = 4806.61. Find the 90% confidence interval for σ 2?

Solution:

We have
x̄ = 18.97

s2 = 1

n − 1

13∑

i=1

(xi − x̄)2 = 1

n − 1

13∑

i=1

(x2i − 13x̄2) = 1

12
128.41.
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For α = 0.10, from TablesA.8 and A.9 in Appendix, χ2
α
2 ,n−1 and χ2

1− α
2 ,n−1 are

21.03 and 5.23, respectively. Hence, the 90% confidence interval for σ 2 is(
128.41

21.03
,

128.41

5.23

)
, i.e., (6.11, 24.55).

Ratio of Variances

Theorem 4.5 Let s21 and s
2
2 be the values of sample variance of random samples of

size n1 and n2, respectively, from two normal populations with variance σ 2
1 and σ 2

2 .
A (1-α)% confidence interval for the ratio of the two population variances is given
by

s21
Fα

2 ,n1−1,n2−1s22
<

σ 2
1

σ 2
2

<
s21

F1− α
2 ,n1−1,n2−1s22

. (4.31)

Example 4.25 The following table gives the number of e-mails sent per week by

employees at two different companies. Find a 95% confidence interval for
σ1

σ2
.

Company 1 81 104 115 111 85 121 95 112 100 117 113 109 101
Company 2 99 100 104 98 103 113 95 107 98 95 101 109 99 93 105

Solution:

The sample variances are s21 = 148.577 and s22 = 31.067. For α = 0.05, from
TableA.11 inAppendix,weget Fα

2 ,n1−1,n2−1 = F0.025,12,14 =3.0501 and F1− α
2 ,n1−1,n2−1

= F0.975,12,14 = 3.2062. Thus, using Eq. (4.31), we get a 95% confidence interval for
σ 2
1

σ 2
2

is (1.568,15,334) and 95% confidence interval for
σ1

σ2
is (1.252, 3.916).

Things to Remember: As a general rule of thumb, follow the steps to do questions
of point estimation.

1. Figure out distribution, and hence, PDF of the random variable involved.
2. List all the quantitieswe can formulate, e.g., samplemean,moments of the random

variable.
3. Use the formulas of the above quantities to get an equation that results in the

value of the parameter.

The interested readers to know about more on sampling distribution may refer to
Cassella and Berger (2002), Rao (1973), Rohatgi and Saleh (2015) and Shao (2003).

Problems

4.1 Suppose X ∼ B(n, p) show that the sample proportion X/n is an unbiased
estimator of p.
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4.2 Let X1, X2, . . . , Xn be a random sample from normal distributed population
with mean μ and variance σ 2. Let s2 be the sample variance. Prove that (n−1)s2

σ 2 has
χ2 distribution with n − 1 degrees of freedom.

4.3 Let X1, X2, . . . , Xn be a normal distribution with mean E(Xi ) = μ,

i = 1, 2, . . . , n,Var(Xi ) = σ 2, i = 1, 2, . . . , n andCov(Xi , X j ) = ρσ 2, i �= j . Let
X̄ and s2 denote the sample mean and sample variance, respectively. Then, prove
that (1−ρ)t

1+(n−1)ρ has student’s t-distribution with n − 1 degrees of freedom.

4.4 Let X and Y be two independent random variables. Show that X + Y is normally
distributed if and only if both X and Y are normal.

4.5 Let Xi , i = 1, 2, . . . , n be a random sample of size n drawn from a population
of size N with population distribution given by

f (x) = 1

σ
√
2π

e
−(x−μ)2

2σ2 , − ∞ < x < ∞.

Show that
∑

i �= j Cov(Xi , X j ) = n(n − 1)
(

−σ 2

N−1

)
.

4.6 Let (X,Y ) be a randomvector of continuous typewith joint PDF f (x, y). Define
Z = X + Y, U = X − Y, V = XY, W = X

Y . Then, prove that the PDFs of Z ,U, V ,
and W are, respectively, given by

fZ (z) =
∫ ∞

−∞
f (x, z − x)dx

fU (u) =
∫ ∞

−∞
f (u + y, y)dy

fV (v) =
∫ ∞

−∞
f (x, v/x)

1

|x |dx

fW (w) =
∫ ∞

−∞
f (xw, x)|x |dx .

4.7 Let X and Y be two independent N (0, 1) random variables. Show that X + Y
and X − Y are independent.

4.8 If X and Y are independent random variables with the same distribution and
X + Y, X − Y are independent. Show that all random variables X,Y, X + Y, X − Y
are normally distributed.

4.9 If X and Y are independent exponential random variable with parameter λ, then
show that X

X+Y follows uniform distribution on (0, 1).

4.10 If X1 and X2 are independent random variables such that X1 ∼ Exp(λ) and
X2 ∼ Exp(λ), show that Z = min{X1, X2} follows Exp(2λ). Hence, generalize this
result for n independent exponential random variables.
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4.11 Let Z ∼ N (0, 1) and X ∼ χ2
n . Prove that Y = Z√

X
n

∼ t (n).

4.12 Let X ∼ χ2
ν1
and Y ∼ χ2

ν2
. Prove that Z = X/ν1

Y/ν2
∼ F(ν1, ν2).

4.13 Let Xi ∼ U (0, 1), i = 1, 2, . . . , n such that Xi are independent. Then, find

the distribution of −
n∑

i=1

log(Xi ).

4.14 Let X1, X2, . . . , Xn be a random sample from a Bernoulli distribution with the
parameter p, 0 < p < 1. Prove that the sampling distribution of the sample variance
S2 is

P

(
S2 = i(n − i)

n(n − 1)

)
= nCi p

i (1 − p)n−i + nCn−i p
n−i (1 − p)i

where i = 0, 1, 2, . . . , [ n2 ]
4.15 Let X1, X2 . . . , Xn be a random sample form a distribution function F , and
let F∗

n (x) be the empirical distribution function of the random sample. Prove that
Cov(F∗

n (x), F∗
n (y)) = 1

n F(x)(1 − F(y)).

4.16 Find Cov(X̄ , S2) in terms of population moments. Under what conditions is
Cov(X̄ , S2) = 0? Discuss this result when the population is normal distributed.

4.17 Find the probability that the maximum of a random sample of size n from a
population exceeds the population median.

4.18 Consider repeated observation on a m−dimensional random variable
with mean E(Xi ) = μ, i = 1, 2, . . . ,m, Var(Xi ) = σ 2, i = 1, 2, . . . ,m and
Cov(Xi , X j ) = ρσ 2, i �= j . Let the i th observation be (x1i , . . . , xmi ),

i = 1, 2, . . . , n. Define

X̄i = 1

m

m∑

j=1

X ji ,

Wi =
m∑

j=1

(X ji − X̄i )
2,

B = m
n∑

i=1

(X̄i − X̄)2,

W = W1 + · · · + Wn.

where B is sum of squares between and W is sum of squares within samples.

1. Prove (i) W ∼ (1 − ρ)σ 2χ(mn − n) and (ii) B ∼ (1 + ¯(m − 1)ρ)σ 2χ2(n − 1).
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2. Suppose (1−ρ)B
(1+ ¯(m−1)ρ)W

∼ F(n−1),(mn−n). Prove that when ρ = 0, W
W+B follows beta

distribution with parameters mn−n
2 and n−1

2 .

4.19 Show that the joint PDF of (X(1), X(2), . . . , X(n)) is given by

f (x(1), . . . , x(n)) =
{
n!Πn

i=1 fXi (x(i)) if x(1) ≤ x(2) · · · ≤ x(n)

0 otherwise
.

Also, prove that the marginal PDF of X(r) r = 1, 2, . . . , n, where X(r) is the r th
minimum, is given by

fX(r) (x(r)) = n!
(r − 1)!(n − r)! [F(x(r))]r−1[1 − F(x(r))]n−r f (x(r)).

4.20 Let X1, X2, . . . , Xn be a random sample from Poisson distributionwith param-
eter λ. Show that α X̄ + (1 − α)s2, 0 ≤ α ≤ 1, is a class of unbiased estimators for
λ. Find the UMVUE for λ. Also, find an unbiased estimator for e−λ.

4.21 Let X1, X2, . . . , Xn be a random sample from Bernoulli distribution B(1, p).
Find an unbiased estimators for p2 if it exists.

4.22 Suppose that 200 independent observations X1, X2, . . . , X200 are obtained

from random variable X . We are told that
200∑

i=1

xi = 300 and that
200∑

i=1

x2i = 3754.

Using these values, obtain unbiased estimates for E(X) and Var(X).

4.23 If X1, X2 and X3 are three independent random variables having the Poisson
distribution with the parameter λ, show that

λ̂1 = X1 + 2X2 + 3X3

6

is an unbiased estimator of λ. Also, compare the efficiency of λ̂1 with that of the
alternate estimator.

λ̂2 = X1 + X2 + X3

3
.

4.24 Let X be Cauchy-distributed random variable with PDF

f (x; θ) = 1

π

1

(1 + (x − θ)2)
, − ∞ < x < ∞,−∞ < θ < ∞.

Find the Cramer–Rao lower bound for the estimation of the location parameter θ .

4.25 Consider the normal distribution N (0, σ 2).With a random sample X1, X2, . . . ,

Xn , we want to estimate the standard deviation σ . Find the constant c so that

Y = c
n∑

i=1

|Xi | is an unbiased estimator of σ and determine its efficiency.
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4.26 If X1, X2, . . . , Xn is a random sample from N (μ, 1). Find a lower bound for the
variance of an estimator of μ2. Determine an unbiased minimum variance estimator
of μ2, and then compute its efficiency.

4.27 Let X1, X2, . . . , Xn be random sample from a Poisson distribution with mean
λ. Find the unbiased minimum variance estimator of λ2.

4.28 Prove that X̄ the mean of a random sample of size n from a distribution that is
N (μ, σ 2), − ∞ < μ < ∞ is an efficient estimator of μ for every known σ 2 > 0.

4.29 Assuming population to be N (μ, σ 2), show that sample variance is a consistent
estimator for population variance σ 2.

4.30 Let X1, X2, . . . , Xn be a random sample from uniform distribution on an inter-

val (0, θ). Show that

(
n∏

i=1

Xi

)1/n

is consistent estimator of θe−1.

4.31 The number of births in randomly chosen hours of a day is as follows.

4, 0, 6, 5, 2, 1, 2, 0, 4, 3.

Use this data to estimate the proportion of hours that had two or fewer births.

4.32 Consider the number of students attended probability and statistics lecture
classes for 42 lectures. Let X1, X2, . . . , X30 denote the number students attended in
randomly chosen 30 lecture classes. Suppose the observed data are given in Table4.4.

1. Using method of moments, find the estimators for the population mean and pop-
ulation variance.

2. Assume that Xi ’s are i.i.d random variables each having discrete uniform distri-
bution with interval 70 and 90, and find ML estimators for the population mean
and population variance.

4.33 Using method of moments, find the estimators of the parameters for the fol-
lowing population distributions
(i) N (μ, σ 2) (ii) Exp(λ) (iii) P(λ).

4.34 Let X1, X2, . . . , Xn be i.i.d from the uniform distribution U (a, b),
−∞ < a < b < ∞. Prove that, using the method of moments, the estimators of
a and b are, respectively,

Table 4.4 Data for Problem4.32

100 90 85 95 88 82 92 84 88 87 82 88 82 91 92

82 90 82 87 92 70 84 79 88 81 82 78 81 82 90
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â = X̄ −
√
3(n − 1)

n
S2

b̂ = X̄ +
√
3(n − 1)

n
S2.

4.35 Let X1, X2, . . . , Xn be i.i.d from the binomial distribution B(n, p), with
unknown parameters n and p. Prove that, using the method of moments, the estima-
tors of n and p are, respectively,

n̂ = X̄

1 − n−1
n

S2

X̄

p̂ = 1 − n − 1

n

S2

X̄
.

4.36 Let X1, X2, . . . , Xn be i.i.d from thegammadistributionG(r, λ),with unknown
parameters r and λ. Prove that, using the method of moments, the estimators of r
and λ are, respectively,

r̂ = X̄2

1
n

n∑

i=1

X2
i − X̄2

λ̂ =
1
n

n∑

i=1

X2
i − X̄2

X̄
.

4.37 A random variable X has PDF

f (x; θ) = 1

2
e−|x−θ |, − ∞ < x < ∞,−∞ < θ < ∞.

Obtain the ML estimates of θ based on a random sample X1, X2, . . . , Xn .

4.38 Consider a queueing system in which the arrival of customers follows Poisson
process. Let X be the distribution of service time, which has gamma distribution;
i.e., the PDF of X is given by

f (x; λ, r) =
{

λ(λx)r−1e−λx

Γ (r) , 0 < x < ∞
0, otherwise

Suppose that r is known. Let X1, X2, . . . , Xn be a random sample on X . Obtain
the ML estimate of λ based on this sample. Further, assume that r is also unknown.
Determine the ML estimators of λ and r .
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4.39 Prove that for the family of uniform distribution on the interval [0, θ ],
max(X1, X2, . . . , Xn) is the MLE for θ .

4.40 Suppose that the random sample arises from a distribution with PDF

f (x; θ) =
{

θxθ−1, 0 < x < 1, 0 < θ < ∞
0 otherwise

.

Show that θ̂ = − n
ln Πn

i=1Xi
is the MLE of θ . Further, prove that in a limiting sense,

θ̂ is the minimum variance unbiased estimator of θ and thus θ is asymptotically
efficient.

4.41 Find the maximum likelihood estimator based on a sample of size n from the
two-sided exponential distribution with PDF

f (x; θ) = 1

2
e−|x−θ |, − ∞ < x < ∞.

Is the estimator unbiased?

4.42 Prove thatmethod ofmoment estimator is consistent for the estimation of r > 0
in the gamma family

f (x; r) =
{

e−x xr−1

Γ (r) 0 < x < ∞
0, otherwise

.

4.43 Let X1, X2, . . . , Xn be a random sample from the normal distributionwith both
mean and variance equal to an unknown parameter θ .

1. Is there a sufficient statistics?
2. What is the MLE for θ?
3. What is the Cramer–Rao lower bound?

4.44 Let X1, X2, . . . , Xn be random sample from the geometric distribution with
PMF

p(x; q) =
{
qx (1 − q), x = 0, 1, 2, . . . ; 0 ≤ q ≤ 1
0 otherwise

.

1. Find the MLE q̂ of q.

2. Show that
n∑

i=1

Xi is a complete sufficient statistics for q.

3. Determine the minimum variance unbiased estimator of q.

4.45 Let X1, X2, . . . , Xn be random sample from a Poisson distribution with mean
λ. Find the minimum variance unbiased estimator of λ2.
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4.46 Theorem (Lehmann–Scheffe Theorem): An unbiased estimator that is a com-
plete sufficient statistics is the unique UMVUE. Using Lehmann–Scheffe theorem,
prove that X̄ is the unique UMVUE for θ of a Bernoulli distribution.

4.47 Let X1, X2, . . . , Xn be a random sample from the Poisson distribution with

parameter λ. Show that
n∑

i=1

Xi is a minimal sufficient statistics for λ.

4.48 Let X1, X2, . . . , Xn be a random sample from the normal distribution N (0, θ).

Show that
n∑

i=1

X2
i is a minimal sufficient statistics for θ .

4.49 If X1, X2, . . . , Xn is a random sample from N (θ, 1). Find a lower bound for the
variance of an estimator of θ2. Determine the minimum variance unbiased estimator
of θ2, and then compute its efficiency.

4.50 Let X1, X2, . . . , Xn be a random sample from the modified geometric distri-
bution with PMF

p(x; q) = (1 − q)x−1q, x = 1, 2, . . . .

Prove that maximum likelihood estimator of q is

q̂ = n
n∑

i=1

xi

= 1

x̄
.

4.51 Let X̄ be the mean of a random sample of size n from N (μ, 25). Find the
smallest sample size n such that (X̄ − 1, X̄ + 1) is a 0.95 level confidence interval
for μ.

4.52 The contents of seven similar containers of sulfuric acid are 9.8, 10.2, 10.4,
9.8, 10.0, 10.2, and 9.6 liters. Find a 95% confidence interval for the mean of all such
containers, assuming an appropriate normal distribution.

4.53 If the standard deviation of the lifetimes of light bulbs is estimated to be 100
hours. What should be the sample size in order to be 99% confident that the error in
the estimated average lifetime will not exceed 20 hours? Repeat the exercise for 95
and 99.73% confidence level.

4.54 A company has 500 cables. Forty cables were selected at random with a mean
breaking strength of 2400 pounds and a standard deviation of 150 pounds.

(a) What are the 95% confidence limits for estimating the mean breaking strength
of remaining 460 cables?

(b) With what degree of confidence could we say that the mean breaking strength
of remaining 460 cables is 2400 ± 35 pounds.

4.55 The standard deviation of the breaking strength of 100 cables was 180 pounds.
Find 99% confidence limits for standard deviation.
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Chapter 5
Testing of Hypothesis

In this section, we shall discuss another way to deal with the problem of making
a statement about an unknown parameter associated with a probability distribution,
based on a random sample. Instead of finding an estimate for the parameter, we shall
often find it convenient to hypothesize a value for it and then use the information
from the sample to confirm or refute the hypothesized value.

5.1 Testing of Statistical Hypothesis

Definition 5.1 Let f (x; θ) be the probability distribution of a population, where
θ ∈ Θ , x , and θ may be vectors. Parametric statistical hypothesis is the testing (ver-
ification) of an assertion (statement) about the unknown parameter θ with the help
of observations obtained from a random sample of size n.

Have a look at the following examples.

1. Examinationmarks follownormal distributionwithmean 15 and variance 3 (Para-
metric testing).

2. Most of the time the student president is fromShivalik Hostel (Parameter involved
is proportion).

3. The average talk time on phone of a person is 3 min and follows exponential
distribution (Parameter involved is distribution of population itself).

4. Traffic speed and traffic volume are correlated with correlation coefficient equal
to 0.7. (Here, we are testing if two populations are independent or not.)

© Springer Nature Singapore Pte Ltd. 2018
D. Selvamuthu and D. Das, Introduction to Statistical Methods,
Design of Experiments and Statistical Quality Control,
https://doi.org/10.1007/978-981-13-1736-1_5
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5.1.1 Null and Alternate Hypothesis

The statement (assertion) about an unknown parameter θ ∈ Θ is called a null hypoth-
esis denoted by

H0 : θ ∈ Θ0, Θ0 ⊂ Θ,

and the complement statement is called an alternative/alternate hypothesis denoted
by

H1 : θ ∈ Θ1 = Θ \ Θ0.

A point needs to be kept in mind here is that the ‘equals to’ is always included in the
null hypothesis, i.e., the null hypothesis is always formed with the ‘=’, ‘≥’, and ‘≤’
signs.

More generally, if we have a family of distributions {Pθ , θ ∈ Θ}, the null hypoth-
esismay be that θ ∈ Θ0 and the alternative θ ∈ Θ1 = Θ − Θ0.The hypothesis is said
to be simple hypothesis if both Θ0 and Θ1 consist of only one point. Any hypothesis
that is not simple is called composite.

But how do you decide whether to accept the null hypothesis or reject it? This is
done by using a test statistic and checking whether it lies in the critical region or not.

Test Statistic: A test statistic is a statistic whose value is determined using the
realization of the sample.

Critical Region: The critical region, also called the rejection region, is the set of
values of the test statistic for which the null hypothesis is to be rejected.

The simplest problem of hypothesis testing arises whenwe have only two possible
alternatives models, and we have to choose one of them on the basis of the observed
sample. For instance, assume we have two possible probability density functions
f0(x) and f1(x) and a sample of size one, i.e., x is observed. We have to select one
of the PDFs based on observation x . The null hypothesis states that the f0 is the true
pdf, whereas the alternative hypothesis states that f1 is the true pdf. A decision test
or test of hypothesis will be of the following form. A region Ω , called the critical
region, is determined, and if x ∈ Ω , we are critical of the null hypothesis and we
reject it in favor of the alternate. If x /∈ Ω , we write do not reject the null hypothesis.

The scenario of rejecting the null hypothesis, when in fact it is true, is called Type
I error. The probability of committing Type I error is called level of significance

of a test, which is denoted by α and is given by α =
∫

Ω

f1(x)dx . Another kind of

statistical error that can occur is called Type II error, which is failing to reject the

null hypothesis when it is actually false. The probability,
∫

Ωc

f1(x)dx , of making

such an error is denoted by β. Another related concept is the power of a test, which is
equal to 1 − β, which basically means the probability of rejecting the null hypothesis
when it is indeed false. An ideal test will be one which minimizes the probability
of committing both Type I and Type II errors. Just like the problem with every ideal
scenario, it is impossible to achieve the objective of simultaneously minimizing both
types of errors.
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Table 5.1 Table of error types

H0 is true H0 is false

Do not reject H0 Correct inference Type II error

Reject H0 Type I error Correct inference

α = P(Type I error) = P(reject H0 | H0 is true).

Similarly,

β = P(Type II error) = P(accept H0 | H0 is false).

Table5.1 shows the relation between truth/falseness of null hypothesis and the
outcome of the hypothesis test.

Example 5.1 Let X be a continuous type random variable that follows exponen-
tial distribution, i.e., X ∼ Exp(λ). Consider the following null hypothesis μ = 20
against the alternative hypothesis μ = 30, where μ = 1

λ
. Let a sample of size one,

i.e., x is observed from the distribution. The test is to reject the null hypothesis if
value of x is greater than 28. Find the probabilities of (i) a Type I error (ii) a Type II
error.

Solution:

(i) The probability of a Type I error is given by:
P(reject H0 when H0 is true) = P(X > 28 when X follows Exp( 1

20 )) =
1 − FX (28) = e

−28
20 = 0.2466.

(ii) The probability of a Type II error is given by:
P(do not reject H0 when H0 is false) = P(X < 28 when X follows Exp( 1

30 )) =
1 − FX (28) = 1 − e

−28
30 = 0.6068.

p-value: The p-value associated with a test, under the assumption of hypothesis
H0, is the probability of obtaining a result equal to or more extreme than what was
actually observed. Rather than selecting the critical region ahead of time, the p-value
of a test can be reported, and a decision can be made by comparing p-value with α.
The smaller the p-value, the larger the significance, i.e., we reject the null hypothesis
if p-value is less than α.

5.1.2 Neyman–Pearson Theory

After defining the two types of errors, we can discuss the notion of a “good test.” To
find a good test, we fix the value of the probability of committing Type I error α and
minimize the probability of committing a Type II error, β. We try to find the “most
powerful test” by minimizing β for every value of the parameter specified by our
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alternate hypothesis. A test,denoted by Φ, of size α is said to be the most powerful
test if it has more power than power of any other test of the same size.

It is time that we state the Neyman1–Pearson2 Lemma clearly. In case of a simple
two hypothesis test, we try to maximize the power of our test by minimizing β. For
any given level of significance, we set an upper bound on the likelihood ratio L0/L1,
where L0 and L1 are the likelihood functions of the data under our null hypothesis
(H0) and alternate hypothesis (H1), respectively.

Mathematically, if we consider a critical region of size α, and if there exists a
constant k such that the value of the likelihood ratio is less than k in our critical
region and greater than k outside that critical region, we say that the critical region is
the most powerful critical region of size α for testing our hypothesis. In other words,
Neyman–Pearson test will reject the null hypothesis if the likelihood ratio is less than
the critical value, i.e., k.

Theorem 5.1 (Neyman–Pearson Lemma (NP-Lemma)) Consider H0 : θ = θ0
against H1 : θ = θ1. Then, any test φ of the form

1.

φ(x) =

⎧⎪⎨
⎪⎩

1 if f1(x)
f0(x)

> k

γ if f1(x)
f0(x)

= k

0 if f1(x)
f0(x)

< k

ismost powerful of its size. Here, k > 0 is constant and 0 < γ < 1, f1(x) = fθ1(x)
and f0(x) = fθ0(x).

2. If k = ∞, the test

φ(x) =
{
1 if f0(x) = 0
0 if f0(x) > 0

is most powerful of size 0 for testing H0 against H1.

In case, we are unable to find such a region by the NP-Lemma, we use likelihood
ratio tests which are essentially the generalizations of the NP-Lemma. Interested
readers may refer to Rohatgi and Saleh (2015) for the proof of NP-Lemma.

Example 5.2 Consider the following problem of hypothesis testing based on a sam-
ple of size one, i.e., x .

H0 : f ≡ f0(x) against f ≡ f1(x)

1Jerzy Neyman (1894–1981) was a Polish mathematician and statistician who spent the first part
of his professional career at various institutions in Warsaw, Poland, and then at University College
London, and the second part at the University of California, Berkeley. Neyman first introduced the
modern concept of a confidence interval into statistical hypothesis testing.
2Egon Sharpe Pearson, (1895–1980) was one of three children and the son of Karl Pearson and, like
his father, a leading British statistician. Pearson is best known for the development of the Neyman–
Pearson Lemma of statistical hypothesis testing. He was the President of the Royal Statistical
Society in 1955–1956 and was awarded its Guy Medal in gold in 1955. He was awarded a CBE in
1946.
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where

f0(x) =
{
2x, 0 < x < 1
0 otherwise

f1(x) =
{
2(1 − x), 0 < x < 1
0 otherwise

Using NP-Lemma, construct the uniformly most powerful (UMP) test of size α.
Also, determine the power function.

Solution:

The most powerful test is of the form

φ(x) =
⎧⎨
⎩
1 if f1(x)

f0(x)
> k

0 if f1(x)
f0(x)

≤ k

which is same as

φ(x) =
{
1 if 2(1−x)

2x > k

0 if 2(1−x)
2x ≤ k

where k is determined as follows:

α = P(reject H0 | H0 is true) = P0

(
1 − X

X
> k

)

= P0

(
X <

1

1 + k

)
=

∫ 1
1+k

0
2tdt.

This gives k = 1−√
α√

α
. Hence, the most powerful test of size α is given by

φ(x) =
{
1 if X <

√
α

0 if X ≥ √
α

.

The power of the test is given by

P(accept H0 | H1 is true) = P1(X <
√

α) =
∫ √

α

0
2(1 − t)dt = 1 − (1 − √

α)2.

Example 5.3 Let (X1, X2, . . . , Xn) be a random sample from normal distribution
i.e., N (0, θ), where the variance θ is unknown.Consider the hypothesis test of the null
hypothesis H0 : θ = θ0 where θ0 is the fixed positive number, against the alternative
composite hypothesis H1 : θ > θ0. Find the uniformly most powerful test of size α.
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Solution: We have Ω = {θ; θ ≥ θ0}. The joint pdf of (X1, X2, . . . , Xn) is

L(θ; x1, x2, . . . , xn) =
(

1

2πθ

) n
2

exp

[
− 1

2θ

n∑
i=1

x2i

]
.

Let θ
′
be a number greater than θ0, and let k be a positive constant. Let C be the set

of points such that the following holds

(
θ

′

θ0

) n
2

exp

[
−

(
θ

′ − θ

2θ0θ
′

)
n∑

i=1

x2i

]
≤ k

or, equivalently

n∑
i=1

x2i ≥ 2θ0θ
′

θ
′ − θ0

[
n

2
ln

(
θ

′

θ0

)
− ln k

]
= c.

It follows from NP-Lemma that the region C = {(x1, x2, . . . , xn) :
n∑

i=1

x2i ≥ c} is
the best rejection region for testing the simple hypothesis H0 : θ = θ0 against the
simple alternative hypothesis H1 : θ = θ

′
.

Now, we need to determine c, such that the rejection region C is of the desired

size α. Under the null hypothesis, the random variable 1
θ0

n∑
i=1

x2i follows chi-square

distributionwith n degrees of freedom. Sinceα = P

(
1
θ0

n∑
i=1

x2i ≥ c

θ0

)
, the constant

c
θ0

may be obtained from TableA.8 or TableA.9 in Appendix, and thus, c can be

determined. Then C = {(x1, x2, . . . , xn) :
n∑

i=1

x2i ≥ c} is the best critical region of

size α for testing H0 : θ = θ0 against the alternative hypothesis H1 : θ = θ
′
.

Moreover, for each number θ
′
greater than θ0, the above argument holds. That is if

θ
′
is the another number greater than θ0, thenC = {(x1, x2, . . . , xn) :

n∑
i=1

x2i ≥ c} is
the best critical region of sizeα for testing H0 : θ = θ0 against the alternative hypoth-

esis H1 : θ = θ
′
. Accordingly, C = {(x1, x2, . . . , xn) :

n∑
i=1

x2i ≥ c} is a uniformly

most powerful critical region of size α for testing H0 : θ = θ0 against H1 : θ > θ0. If
(x1, x2, . . . , xn) denotes the experimental value of random sample (X1, X2, . . . , Xn),
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then H0 : θ = θ0 is rejected at the significance level α, and H1 : θ > θ0 is accepted,

if
n∑

i=1

x2i ≥ c, otherwise, H0 : θ = θ0 is not to be rejected.

5.1.3 Likelihood Ratio Test

The likelihood ratio test involves finding the critical region by setting an upper bound
on the ratio of the maximum value of likelihood under the null hypothesis and the
maximum value of the likelihood under all the admissible values. The test rejects the
null hypothesis if:

max(Likelihood under H0)

(Likelihood under H0 and H1)
< critical value.

Example 5.4 Consider a random sample (X1, X2, . . . , Xn) from an exponential dis-
tribution with parameter λ. Consider

H0 : λ = λ0 against H1 : λ > λ0

Determine the likelihood ratio test associated with the test of H0 against H1.

Solution:

The likelihood function is

L(λ; x) =
n∏

i=1

f (xi , λ) = λne

−λ

∑
i

xi
. (5.1)

The maximum of Eq. (5.1) over the null hypothesis is given by λn
0e

−λ0

∑
i

xi
. Simi-

larly, the maximum of Eq. (5.1) over H0 and H1 is given as follows:

(i) Taking logarithm on both sides of Eq. 5.1, we have ln L = n ln λ − λ
∑
i

xi .

(ii) Differentiating with respect to λ and putting equal to zero, we get λ̂ = 1
x̄ .

(iii) Since L(λ; x) is an increasing function for λ < 1
x̄ and decreasing for λ > 1

x̄ , we
have

max{L(λ; x)} =

⎧⎪⎨
⎪⎩

x̄−ne−n if λ0 ≤ 1
x̄

λn
0e

−λ0

∑
i

xi
if λ0 > 1

x̄

.

(iv) Therefore, the likelihood ratio test is given by
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φ(x) =

⎧⎪⎨
⎪⎩ λn

0e

−λ0

∑
i

xi

x̄−ne−n if λ0 ≤ 1
x̄

1 if λ0 > 1
x̄

.

Now, let us see some cases wherein all of the above concepts are applied.

5.1.4 Test for the Population Mean

Suppose that X1, X2, . . . , Xn is a randomsample fromanormal distribution N (μ, σ 2)

where μ is unknown and σ 2 is a known quantity. Suppose we want to test the null
hypothesis that the mean (μ) is equal to some specified value against the alternative
that it is not. That is, we want to test

H0 : μ = μ0 against H1 : μ �= μ0

for a specified valueμ0.We know from our previous knowledge that the natural point
estimator for the population mean is the sample mean

X̄ =

n∑
i=1

Xi

n
.

The test statistic in this case is defined as

Z = X̄ − μ

σ/
√
n

∼ N (0, 1).

It is reasonable to accept H0 if X̄ is not too far from μ0. Hence, the critical region is
of the form

C = {(x1, . . . , xn) | |X̄ − μ0| > k}

where, for given level of significance α, we can determine the value of k as follows:

P
(|X̄ − μ0| > k

) = α.

Under the null hypothesis, Z = X̄−μ0

σ/
√
n

∼ N (0, 1), so we have

P

(
|Z | >

k
√
n

σ

)
= α

which is equivalent to
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2P

(
Z >

k
√
n

σ

)
= α.

Since P(Z > z α
2
) = α

2 , we get

k
√
n

σ
= z α

2
or k = z α

2
σ√
n

.

Now, for a given significance level α, the null hypothesis H0 : μ = μ0 will be
accepted when

−z α
2

< z0 < z α
2

where z0 = X̄−μ0
σ√
n
. Now, we see the following examples.

Example 5.5 Assume that the examination marks of students follow normal distri-
bution with unknown mean (μ) but known variance (σ 2) = 0.25. Test the hypothesis

H0 : μ = 8 against H1 : μ �= 8

with the level of significance α = 0.01, the sample mean being equal to 7.8 and the
sample size being 50.

Solution:

Step 1
H0 : μ = 8 against H1 : μ �= 8

Step 2 Test statistics:

Z = x̄ − μ0

σ0/
√
n

.

Step 3 From observed information with null hypothesis

z0 = x̄ − μ0

σ0/
√
n

= −2.83.

Step 4 For α = 0.01, check if

−2.57 = −z0.005 < z0 < z0.005 = 2.57.

Step 5 The null hypothesis is rejected as z0 < −z0.005.

Example 5.6 Suppose that, we have a random sample of 50 elements drawn from
a population in which the characteristic X has a normal distribution with standard
deviation σ = 5 and an unknown expected valueμ. From the sample of size n = 50,
we have obtained x̄ = 2. The problem is to test the hypothesis H0 : μ = 0 at 95%
confidence level.
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Solution:

Step 1
H0 : μ = 0 against H1 : μ �= 0

Step 2 Test statistics:

Z = x̄ − μ0

σ0/
√
n

.

Step 3 From observed information with null hypothesis

z0 = 2 − 0

5/
√
50

= 2
√
2 = 2.828.

Step 4 For α = 0.05, check if

−1.96 = −z0.025 < z0 < z0.025 = 1.96.

Step 5 The null hypothesis is rejected as z0 > z0.025.

Example 5.7 A researcher has gathered data on daily returns on crude oil market
(Brent Blend) over a recent period of 250-days. The mean daily return has been
0.1%, and the population standard deviation (available from historical data) of daily
returns is 0.25%. The researcher believes that the mean daily return of Brent crude
oil is not equal to zero. Construct a hypothesis test of the researcher’s belief with
level of significance α = 0.1?

Solution:

The null hypothesis is the one the researcher wants to reject

Step 1
H0 : μ = 0 against H1 : μ �= 0

Step 2 And the test statistics for the z-test is

Z = X̄ − μ

σ/
√
n

.

Step 3 From observed information with null hypothesis

z0 = x̄ − μ0

σ0/
√
n

= 6.32.

Step 4 Check if
−1.64 = −z0.05 < z0 < z0.05 = 1.64.

Step 5 The null hypothesis is rejected as z0 > z0.05.

Thus, the researcher’s hypothesis is true.
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Remark 5.1 • The above case can bemodified for the situation wherein the variance
(σ 2) of the distribution is unknown. The sampling distribution of the test statistic
under consideration now is the t-distribution in place of the standard normal dis-
tribution and the population variance (σ 2) is replaced by the sample variance (s2).

t = X̄ − μ

s/
√
n

which after substitution of values gives

t0 = x̄ − μ0

s0/
√
n

.

We reject the null hypothesis when t0 falls in the critical region. A summary of
this hypothesis test is given in Table5.2 for one-sided test as well. If n ≥ 30, the
t-distribution can be replaced by the standard normal distribution.

• Another modification of the above case is when we have to consider the difference
between the two means. Two independent populations are considered with their
variances, σ 2

1 and σ 2
2 , known. The null hypothesis is defined as

H0 : μ1 − μ2 = δ against H1 : μ1 − μ2 �= δ.

Now the test statistic is

Z = X̄ − Ȳ − (μ1 − μ2)√
σ 2
1
n1

+ σ 2
2
n2

which after substitution of values with null hypothesis gives

z0 = x̄ − ȳ − δ√
σ 2
1
n1

+ σ 2
2
n2

.

The null hypothesis is rejected if z0 falls in the critical region. This hypothesis test
is summarized in Table 5.3.

Table 5.2 Hypothesis test of H0 : μ = μ0 against different forms of H1 when σ 2 is unknown

Alternative hypothesis (H1) Reject H0 if

μ �= μ0 t0 < −tα/2,n−1 or t0 > tα/2,n−1 (Two-sided test)

μ > μ0 t0 > tα,n−1 (One-sided test)

μ < μ0 t0 < −tα,n−1 (One-sided test)
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Table 5.3 Hypothesis test of H0 : μ1 − μ2 = δ against different forms of H1 when σ 2 is known

Alternative hypothesis (H1) Reject H0 if

μ1 − μ2 �= δ z0 < −Zα/2 or z0 > Zα/2 (Two-sided test)

μ1 − μ2 > δ z0 > Zα (One-sided test)

μ1 − μ2 < δ z0 < −Zα (One-sided test)

• We can also modify the above case, when we have to consider the difference
between the two means of two independent populations, but with their variances
unknown. Thus, the sampling distribution test statistics under consideration would
be the t-distribution instead of the standard normal distribution, and the population
variancewill be replaced by the sample variance. Hence, our test statistics becomes

t = (X̄ − Ȳ ) − (μ1 − μ2)

sp

√
1

n1
+ 1

n2

where

s2p = (n1 − 1)s21 + (n2 − 1)s22
n1 + n2 − 2

.

After substitution, we have

t0 = (x̄ − ȳ) − δ

sp

√
1

n1
+ 1

n2

.

The null hypothesis is rejected if t0 falls in the critical region. A summary of this test
is given in Table 5.4.

Example 5.8 The average return of a portfolio A of ten stocks was 77%. The average
return on a similar portfolio (same stocks but with special weight balancing method)
B of ten stockswas75%.Carryout a statistical test to assesswhether the portfoliowith
special balancing method has the same return as portfolio at 5% level of significance.

Table 5.4 Hypothesis test of H0 : μ1 − μ2 = δ against different forms of H1 when σ 2 is unknown

Alternative hypothesis (H1) Reject H0 if

μ1 − μ2 �= δ t0 < −t α
2 ,n1+n2−2 or t0 > t α

2 ,n1+n2−2 (Two-sided test)

μ1 − μ2 > δ t0 > t α
2 ,n1+n2−2 (One-sided test)

μ1 − μ2 < δ t0 < −t α
2 ,n1+n2−2 (One-sided test)
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You are given that
10∑
i=1

x2i = 59420 and
10∑
i=1

y2i = 56390. Assume that returns are

normally distributed and that the variance of the underlying distribution for each
portfolio is the same.

Solution:

We are testing: H0 : μ1 = μ2 against H1 : μ1 �= μ2. T = X̄−Ȳ−(δ)

sp
√

1
n1

+ 1
n2

, where s2p =
(n1−1)s21+(n2−1)s22

n1+n2−2 . It follows tn1+n2−2. Using the observed values of n1 = 10, n2 =
10, X̄ = 75, Ȳ = 77, and s2p = 3.8732. Then,

T0 = 77 − 75 − (0)

3.873
√

1
10 + 1

10

= 1.15. (5.2)

This is less than 1.734 the upper 5% point of the t18 distribution. So we have insuf-
ficient evidence to reject H0 at 5% level. Therefore, it is reasonable to conclude that
the portfolio with special balancing scheme has same return as portfolio X .

5.1.5 Test for the Variance

Suppose that X1, X2, . . . , Xn is a sample from a normal distribution N (μ, σ 2)where
both the parametersμ and σ 2 are unknown. Suppose we want to test the null hypoth-
esis that the variance (σ 2) is equal to some specified value against the alternative that
it is not. That is, we want to test

H0 : σ 2 = σ 2
0 against H1 : σ 2 �= σ 2

0

with the level of significance (α). The test statistic in this case is defined as

(n − 1)s2

σ 2
∼ χ2

n−1

where s2 is the sample variance obtained from the random sample of size n.
Once the values given in the question are substituted into the test statistic, we

obtain

χ2
0 = (n − 1)s20

σ 2
0

.

The null hypothesis will be rejected, if χ2
0 > χ2

n−1,α/2 or χ2
0 < χ2

n−1,1−α/2.

Remark 5.2 • The above concept can similarly be extended to one-sided tests, a
summary of which is shown in Table5.5.
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Table 5.5 Hypothesis test of H0 : σ 2 = σ 2
0 against different forms of H1

Alternative hypothesis (H1) Reject H0 if

σ 2 �= σ 2
0 χ2

0 > χ2
n−1,α/2 or χ2

0 <

χ2
n−1,1−α/2 (Two-sided test)

σ 2 > σ 2
0 χ2

0 > χ2
n−1,α (One-sided test)

σ 2 < σ 2
0 χ2

0 < χ2
n−1,1−α (One-sided test)

• Another variation of the above is discussed below.
Consider two independent populations with known means (μ1 and μ2) but
unknown variances (σ 2

X and σ 2
Y ). The null hypothesis is defined as

H0 : σ 2
X = σ 2

Y

The test statistic in this case is defined as

F = s2X/σ 2
X

s2Y /σ 2
Y

where s2X and s2Y are the sample variance. Once the values are substituted with null
hypothesis, we obtain

F0 = s2X
s2Y

.

This hypothesis test can be extended to one-sided test also. Table5.6 summarizes
this hypothesis test.

Example 5.9 Chicago Mercantile Exchange is one of the largest futures and options
exchanges. It is a dominant venue for the sale of gold futures contract. Historical
weekly returns of futures have a standard deviation of 0.4%. A trader wants to verify
whether this claim still adequately describes the standard deviation of the contracts.
He collected weekly returns data for 24 weeks and measured standard deviation of
0.38%. Determine if the more recent standard deviation is different from the historic
standard deviation?

Solution:

The trader wants to test whether the variance has changed, up or down, a two-tailed
test should be used. The hypothesis test structure takes the form:

Step 1
H0 : σ 2 = 0.16 against H1 : σ 2 �= 0.16

Step 2 The test statistics is:

χ2 = (n − 1)s2

σ 2
.
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Table 5.6 Hypothesis test of H0 : σ 2
X = σ 2

Y against different forms of H1

Alternative hypothesis (H1) Reject H0 if

σ 2
X �= σ 2

Y F0 < F1−α/2,n1−1,n2−1 or F0 > Fα/2,n1−1,n2−1

σ 2
X > σ 2

Y F0 > Fα,n1−1,n2−1

σ 2
X < σ 2

Y F0 < F1−α,n1−1,n2−1

Step 3 There are 23 degrees of freedom. Thus, from the sample data with null
hypothesis, we have

χ2 = 20.7575.

Step 4 Let us use 5% level of significance, meaning there will be 2.5% probability
in each tail of the distribution.UsingTableA.9 inAppendix, decision rule based on
the critical region would be reject H0 if: χ2

23,0.975 < 11.689 or χ2
23,0.025 > 38.076.

Step 5 Since the test statistics falls between the two critical regions, we fail to
reject the null hypothesis that the variance is 0.16%.

Example 5.10 Benchmark crude is the crude oil which serves as a reference price
for buyers/sellers of crude oil. The primary benchmarks are WTI, Brent, and OPEC.
Mathew is examining two crude oil markets, Brent Blend andWest Texas Intermedi-
ate (WTI). He suspects that the WTI is more volatile than the Brent. To confirm this
suspicion, Mathew has looked at a sample of returns of last 31 days from WTI oil
market and 41 days from Brent oil market. He measured the sample standard devia-
tion to be 0.430% for WTI market and 0.380% for Brent. Construct a hypothesis to
test Mathew’s suspicion?

Solution:

We are concerned whether the variance of returns ofWTI is greater than the variance
of returns of the Brent oil market (Table5.6).

Step 1 The test hypothesis is:

H0 : σ1
2 ≤ σ2

2 against H1 : σ1
2 > σ2

2

where σ1
2is the variance of returns for WTI and σ2

2 is the variance of returns for
the Brent oil market. Note that, this is a one- tailed or one-sided test.

Step 2 For tests of difference between variances, the appropriate test statistics
using F-distribution is:

F = s12/σ 2
1

s22/σ 2
2

.

Step 3 From the given sample data under the null hypothesis,

F0 = s12

s22
= (0.438)2

(0.380)2
= 1.2805.
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Step 4 Let us conduct the hypothesis test at 5% level of significance. Using the
sample sizes from twomarkets, the critical F-value for this one-sided test is found
to be 1.74. The value is obtained from TableA.13 in Appendix of F-distribution
at 5% level of significance with n1 = 30 and n2 = 40. Hence, the decision rule is
based on reject H0 if: F0 > 1.74.

Step 5 Since the calculated F-statistics of 1.2805 is less than the critical value
of 1.74; we fail to reject the null hypothesis at 5% level of significance. Mathew
should conclude that theWTImarket is notmore volatile thanBrent Blendmarket.

5.1.6 Test for the Distribution

In parametric models, one assumes a priori that the distribution has a specific form
with one or more unknown parameters and tries to find out the best or at least reason-
ably efficient procedures that answer specific questions regarding the parameters. If
the assumptions are violated our procedures might become faulty. One of the inter-
esting problems in statistical inference is to determine whether or not a particular
probabilistic model is appropriate for a given random phenomenon. This problem
often reduces to a problem of testing whether a given random sample comes from a
particular probability distribution (pre-specified partially or completely) or not. For
instance, we may a priori feel that the number of customers coming to a particular
bank is a random sample coming from Poisson distribution. This hypothesis or claim
can be tested by observing the number of people coming to the bank over a period
of a month or few months and taking a decision based on the observations that the
underlying distribution is Poisson or not.

Definition 5.2 (Goodness of Fit) Testing the significance of the discrepancy between
the experimental values and theoretical values obtained is called testing for Goodness
of Fit.

In other words, this is the test of the null hypothesis that a set of data comes from a
population having a given distribution against the alternative that the population has
some other distribution.

Remark 5.3 1. Goodness of Fit is a nonparametric test.
2. Goodness of Fit test can be applied to both the cases, i.e., when population

distribution is discrete or continuous.

The data given in the question are in tabulated form. The recorded samples form
Groups. For instance, a sample of 150 light bulbs, their burning time was tabulated
as given in Table5.7.
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Table 5.7 Example 5.11 Life of light bulbs

Burning time # of Light bulbs (having burning time in the
specified range)

0–100 47

100–200 40

200–300 35

≥300 28

Mathematical Analysis

Consider the test statistic

D2 =
k∑

i=1

(Oi − Ei )
2

Ei
∼ χ2

k−1

where
Oi → observed frequency
Ei → theoretical (expected frequency) asserted by the null hypothesis
n → total number of observations or sample size
k → total number of groups such that n1 + n2 + · · · + nk = n
Pi → theoretical probability of occurrence of the event associated with the i th group,
i = 1, 2, . . . , k
Ei = nPi , i = 1, 2, . . . , k.

Steps to Solve the Question

1. H0: Data follow the given distribution
H1: Data do not follow the given distribution.

2. Construct the test statistic
3. Compute the value of the test statistic under the null hypothesis D2

0 .
4. Find the tabled value χ2

k−1,α .
5. Compare the value of the test statistic D2

0 and the tabled value χ2
k−1,α . If, D

2
0 >

χ2
k−1,α , then reject H0.

Remark 5.4 Few points to be remembered are as follows:

• Construct k groups such that each nPi ≥ 5; where i = 1, . . . , k.
If nPi < 5, then merge the groups where nPi < 5 with other groups.

• D2 follows χ2 distribution with k − 1 degrees of freedom. This is so because, we

have already utilized one information
k∑

i=1

ni = n.

• If ‘r ’ parameters ‘θ = (θ1, θ2, . . . , θn)’ of the distribution of the underlying pop-
ulation are unknown, then estimate these parameters using MLE or Method of
Moments.
In this case, if D2

0 > χ2
k−1−r ,α , then reject H0.
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Example 5.11 Suppose we believe that the life length ‘T ’ (in hours) of light bulb
is exponentially distributed with parameter λ = 0.005. We obtain a sample of 150
bulbs, test them and record their burning time say T1, T2, T3, . . . , T150 and tabulate
it as given in Table5.7. Test the hypothesis that the data represent a random sample
from an exponential distribution with λ = 0.005 at level of significance, α = 0.01.

Solution:

Let us consider following hypothesis testing.
H0 : Given data follow an exponential distribution,
H1 : Given data do not follow an exponential distribution.
Furthermore, it is given that n = 150, λ = 0.005. With reference to Table5.8, we
have

P1 =
100∫

0

λe−λxdx = 0.39, P2 =
200∫

100

λe−λxdx = 0.24,

P3 =
300∫

200

λe−λxdx = 0.14, P4 =
∞∫

300

λe−λxdx = 0.22.

Degrees of freedom = 4 − 1 = 3. From TableA.9 in Appendix, χ2
3,0,01 = 11.341.

As D2
0 > χ2

3,0.01, H0 is to be rejected.

Example 5.12 The number of computermalfunctions per day, recorded for 260 days,
is listed in Table5.9. Test the hypothesis that this data follow a Poisson distribution
at 5% level of significance.

Table 5.8 Example5.11 Calculations

Burning Time Oi (Number of
light Bulbs)

Ei = nPi (Oi − Ei )
2 (Oi−Ei )

2

Ei

0–100 47 58.5 132.25 2.26

100–200 40 36 16 0.44

200–300 35 21 196 9.33

≥300 28 33 25 0.76

150 D2
0 = 12.79

Table 5.9 Example5.12 Observed frequencies of computer malfunctions

Number ofmalfunctions (xi ) 0 1 2 3 4 5

Number of days ( fi ) 77 90 55 30 5 3
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Solution:

A Poisson distribution with parameter λ, which is same as mean. Hence, we shall
use the sample data (sample mean) to estimate λ. Here, n = 260.

x̄ = λ̂ =

6∑
i=1

fi xi

6∑
i=1

fi

= 325

260
= 1.25.

∴ λ̂ = 1.25.

If X ∼ P(λ), then P(X = x) = e−λλx

x ! , x = 0, 1, 2, 3 . . . .
Consider Table5.10 for initial calculations. Since a Poisson distribution is valid

for all positive values of x , this additional grouping is necessary. P(X ≥ 6) = 1 −
P(X ≤ 5). Since Ei for groups xi = 5 and xi ≥ 6 is less than 5, they must be merged
with xi = 4, to create a new group, namely xi ≥ 4 as shown in Table5.11.

Step 1 The test hypothesis is: H0 : Number of daily malfunctions follows Poisson
distribution
H1 : Number of daily malfunctions does not follow Poisson distribution

Step 2 D2 =
k∑

i=1

(Oi − Ei )
2

Ei
∼ χ2

k−1 ∼ χ2(n − 1).

Step 3 From the sample data with null hypothesis, D2
0 = 2.153.

Step 4 Significance level α = 0.05. There are 5 groups. k = 5 (refer the above
Table5.11). Hence, degrees of freedom is: k − 1 − r = 5 − 1 − 1 = 3. From
TableA.9 in Appendix, we get χ2

3,0.05 = 7.815.
Step 5 As D2

0 �> χ2
3,0.05, H0 is accepted.

There is no evidence, at 5% level of significance to suggest that the number of
computer malfunctions per day does not have a Poisson Distribution.

Table 5.10 Example5.12 Initial calculations

xi P(X = xi ) Ei = nPi

0 0.2865 74.5

1 0.3581 93.1

2 0.2238 58.2

3 0.0933 24.2

4 0.0291 7.6

5 0.0073 1.9

≥6∗ 0.0019 0.5

1.0000 260.0
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Table 5.11 Example5.12 Calculations

xi Oi = fi P(X = xi ) Ei = nPi (Oi − Ei )
2 (Oi−Ei )

2

Ei

0 77 0.2865 74.5 6.25 0.084

1 90 0.3581 93.1 9.61 0.103

2 55 0.2238 58.2 10.24 0.176

3 30 0.0933 24.2 33.64 1.390

≥4 8 0.0383 10.0 4.00 0.400

1.0000 D2
0 = 2.153

5.1.7 Testing Regarding Contingency Tables

Contingency tables provide an easy method to determine the dependency between
two variables. The following example should make it clear.

Example 5.13 Fruit trees are subject to a bacteria-caused disease commonly called
Blight. One can imagine different treatments for this disease:Treatment A: NoAction
(AControlGroup),Treatment B: careful removal of affected branches, andTreatment
C : frequent spraying of the foliage with an antibiotic in addition to careful removal
of affected branches. One can also imagine different outcomes from the disease—
Outcome 1: tree dies in the same year as the disease was noticed, Outcome 2: Tree
dies 2–4 years after disease was noticed, Outcome 3: Tree survives beyond 4 years.

A group of ‘N’ trees are classified into one of the treatments and over the next
few years the outcome is recorded. If we count the number of trees in a particular
treatment/outcome pair, we can display the results in a Contingency Table5.12.

We can now use aχ2 test to determinewhether or not, the two variables treatments
and outcomes, are independent.

Mathematical Analysis

• H0: The variables are independent.
H1: The variables are dependent in some way.
Let ei j represent the expected frequency for the cell in the i th row and j th column.
Then, as the variables are independent, we have ei j = ri c j

N . In words, expected
frequency = (Row Total)(Column Total)

Total Sample Size .

Table 5.12 Contingency Table

Outcome Treatment A Treatment B Treatment C Row totals

1 #A1 #B1 #C1 total1

2 #A2 #B2 #C2 total2

3 #A3 #B3 #C3 total3

Column totals Total A Total B Total C Grand total



5.1 Testing of Statistical Hypothesis 167

• Consider the test statistic D2 =
r∑

i=1

c∑
j=1

(ni j − ei j )2

ei j
∼ χ2

(r−1)(c−1).

To compute the test statistic D2 for each cell, take the difference between the
observed and the expected frequency and square it, and divide it by the expected
frequency.

• The data given in Table5.12 are the observed frequency.
• We now need to compute the expected frequency. As expected, we mean the
expected frequency if the variables are independent. For this purpose, we define
the following:

– r : total number of rows,
– c: total number of columns,
– N : total number of observations,
– ni j : observed count for the cell in row i and column j ,
– ri : total for row i ,
– c j : total for column j .

• Reject H0 if, D2
0 > χ2

(r−1)(c−1),α , where α is the level of significance.

Example 5.14 A student is interested in determining whether there is a relationship
between gender and the major course at her college or not. She randomly sampled
some men and women on campus and asked them if their major course was Natu-
ral Science (NS), Social Science (SS), or Humanity (H). Her results appear in the
Table5.13. Test at the 5% level of significance, if there is a relationship between the
gender and the major course at college.

Solution:

Consider following hypothesis:

H0: The variables gender and major at college are independent.
H1: The variables are dependent in some way.

The computation of row and column totals, is shown in Table5.14. Computation
of expected frequency using the formula ei j = ri c j

N . (e.g., e1,1 = (34)(21)
57 ) is shown in

Table5.15. The expected frequencies are mentioned in brackets. Now, computing the
test statistic D2

0 = 2.229. Since, r = 2, c = 3, df= (r − 1)(c − 1) = 2. Given α =
0.05, from TableA.9 in Appendix, χ2

2,0.05 = 5.99. As D2
0 �> χ2,0.05, H0 is rejected.

Table 5.13 Example5.14 Major course at college

NS SS H

Women 10 14 10

Men 11 8 4



168 5 Testing of Hypothesis

Table 5.14 Example5.14 Computation of row and column totals

j = 1 j = 2 j = 3 Total

NS SS H

i = 1 Women 10 14 10 34

i = 2 Men 11 8 4 23

Total 21 22 14 57

Table 5.15 Example5.14 Computation of expected frequencies

j = 1 j = 2 j = 3 Total

NS SS H

i = 1 Women 10 (12.526) 14 (13.123) 10 (8.35) 34

i = 2 Men 11 (8.474) 8 (8.877) 4 (5.649) 23

Total 21 22 14 57

Table 5.16 Example5.15 Contingency table

Gender Bar in shopping complexes

Favor Oppose No opinion Total

Male 250 229 15 494

Female 301 196 9 506

Total 551 425 24 1000

Example 5.15 In a survey of 1000 individuals, they are asked whether they are in
favor of, oppose, or have no opinion on a complete ban on smoking at public places.
The data are further classified on the basis of gender and is given in Table 5.16.
Test the null hypothesis that gender and opinion on bar in shopping complexes are
independent at 5% confidence level.

Solution:

Consider the following hypothesis testing
H0 :The variables gender and opinion on bar in shopping complexes are independent.
H1 : The variables are dependent in some way

We compute the expected frequency using the formula ei j = ri c j
N

.

j = 1 j = 2 j = 3
Gender Favor Oppose No opinion Total

i = 1 Male 250 229 15 494
i = 2 Female 301 196 9 506

Total 551 425 24 1000
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We compute the test statistic D2 as

D2 =
2∑

i=1

3∑
j=1

(ni j − ei j )2

ei j
.

This follows χ2
(2−1)(3−1), i.e., χ

2
2 ,

D2
0 = 1.81 + 1.729 + 0.834 + 1.767 + 1.688 + 0.814 = 8.642.

From TableA.9 in Appendix, we have χ2
2,0.05 = 5.99. As D2

0 > χ2
2,0.05, H0 is to be

accepted.

5.1.8 Test Regarding Proportions

In many situations, one is interested to test what fraction of total satisfies some
condition or not. For these kind of situations, tests of hypothesis concerning propor-
tions are required. For instance, a candidate competing in next elections is interested
in knowing that what proportion of the voters will vote in favor of him/her in the
upcoming elections. Another example is that all manufacturing industries are con-
cerned regarding the fraction of defective items in a particular shipment. We shall
consider the problem of hypothesis testing that the proportion of successes in a ran-
dom experiment whose distribution is binomially distributed with some specified
parameter value. We are testing the null hypothesis H0 : p = p0, where p is the
parameter of the binomial distribution. The alternative hypothesis may be one of
the usual one-sided or two-sided alternatives: H1 : p < p0, p > p0, or p �= p0. The
appropriate random variable, denoted by X , on which we base the decision criterion
follows B(n, p) and the statistic is p = X/n. Note that, it is highly unlikely that one
can obtain a critical region of size exactly equal to a pre-specified value of α. There-
fore, it is preferable to base the decision on P-values when dealing with samples of
small size. To test the hypothesis H0 : p = p0 against H1 : p �= p0 at the α level of
significance, we compute the P-value

P = 2P(X ≤ x when p < p0) if x < np0 or P = 2P(X ≥ x when p < p0) if x > np0.

Reject H0 if the computed P-value is less than or equal to α.
For one-sided test H1 : p < p0, we compute

P = P(X ≤ x when p = p0).

Reject H0 if the computed P-value is less than or equal to α. Similarly, for one-sided
test H1 : p > p0, we compute
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P = P(X > x when p = p0).

Reject H0 if the computed P-value is less than or equal to α.

Remark 5.5 • When p0 is not given, p0 can be estimated from the sample data.
• The binomial probabilities were obtainable from the exact binomial formula or
from TableA.2 in Appendix when n is small.

• For large n, approximation procedure is required. When p0 is very close to 0 or
1, the Poisson distribution may be used. However, approximation into the normal
distribution is usually preferred for large n and is very accurate as long as p0 is
not extremely close to 0 or 1.

If we use the normal approximation for large n to test the hypothesis of proportion,
consider the test statistic

X − np√
np(1 − p)

∼ N (0, 1).

Substituting the values with null hypothesis, we have

z0 = x − np0√
np(1 − p)

where ‘x’ is the number of cases favoring out of n the null hypothesis. α is the level
of significance. A summary of this test is given in Table5.17.

Example 5.16 A person complains that out of the total calls he receives at least 45%
of the calls are regarding the promotions of some products. To check this claim, a
random sample of his 200 calls was selected from his call history. If 70 of these calls
are found to be regarding promotional offers, is the person’s claim believable at 5%
level of significance?

Solution:

Step 1 H0 : p ≥ 0.45 against H1 : p < 0.45.
Step 2 Test statistics Z = x−np√

np(1−p)
.

Step 3 Here, p0 = 0.45, n = 200 and x = 70. Hence,

z0 = x − np0√
np0(1 − p0)

= 70 − (200)(0.45)√
200(0.45)(0.55)

= −2.842.

Table 5.17 Testing of H0 : p = p0 against H1

If H1 Reject H0 if

p �= p0 z0 < −z α
2
or z0 > z α

2
Two-sided test

p > p0 z0 > zα One-sided test

p < p0 z0 < −zα One-sided test
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Step 4 Given α = 0.05. From TableA.7 in Appendix, we have z0.025 = 1.96.
Step 5 As z0 < −z0.025, H0 is to be rejected.

Situations often arise where we wish to test the hypothesis that two proportions are
equal. For example, a vote is to be taken among the students of two lecture classes of
the same subject to determine whether a proposed surprise quiz should be conducted.
In general, we wish to test the null hypothesis that two proportions are equal. The
testing of hypothesis is given by

H0 : p1 = p2; H1 : p1 < p2, p1 > p2, or p1 �= p2.

In this case, independent samples of size n1 and n2 are selected at random from
two binomial distributed populations. For large n1 and n2, by using the normal
approximation, the test statistic becomes

Z =
X1
n1

− X2
n2√

p(1 − p)
(

1
n1

+ 1
n2

) .

When H0 is true, we can substitute p1 = p2 = p (say), then

z0 = x2/n1 − x2/n2√
p(1 − p)(1/n1 + 1/n2)

.

When p is not given, upon pooling the data from both samples, the pooled estimate
of the proportion p is p̂ = x1+x2)

n1+n2)
where x1 and x2 are the number of successes in each

of the two samples. The critical regions for the appropriate alternative hypothesis are
set up as before using critical points of the standard normal curve.

When, we have k populations (k > 2) H0: p1 = p2 = p3 · · · = pk = p0(say)
H1: at least two of these proportions are not equal
For the i th sample, we have the statistic

Zi = Xi − ni pi√
ni piqi

∼ N (0, 1), i = 1, 2, 3, . . . , k; qi = 1 − pi .

Now, consider the test statistic

D2 =
k∑

i=1

(
Xi − ni pi√

ni piqi

)2

∼ χ2
k , i = 1, . . . , k.

Note that, Z2
1 + Z2

2 + · · · + Z2
k ∼ χ2

k .
ni : sample size of the i th population
xi : number of cases of the i th population favoring the null hypothesis.
In this case, reject H0 if D2

0 < χ2
k,1− α

2
or D2

0 > χ2
k, α

2
.
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Table 5.18 Example5.17 Test of quality of tire brand

xi pi = p̂ ni pi ni pi qi (xi − ni pi )2
(xi−ni pi )2

ni pi qi

i = 1; Brand A 26 3
25 24 21.12 4 0.189

i = 2; Brand B 23 3
25 24 21.12 1 0.047

i = 3; Brand C 15 3
25 24 21.12 81 3.835

i = 4; Brand D 32 3
25 24 21.12 64 3.030

D2
0 = 7.101

Remark 5.6 If p0 is not given, then it is estimated using the sample values of ‘k’
populations as follows:

p̂0 = x1 + x2 + · · · + xk
n1 + n2 + · · · + nk

.

This is an unbiased point estimator. In this case, reject H0 if D2
0 < χ2

k−1,1− α
2
or

D2
0 > χ2

k−1, α
2
. One degree of freedom is reduced because we have estimated one

parameter, i.e., p0, using the samples.

Example 5.17 If 26 of 200 tires of Brand A failed to last 20,000 miles, while the
corresponding figures for 200 tires each of Brand B, C , and D were 23, 15, and
32. Use the level of significance α = 0.05 to test the null hypothesis that there is no
difference in the quality of the four kinds of tires.

Solution:

Consider the following hypothesis testing.

H0:p1 = p2 = p3 = p4 = p (say) H1: at least two of these proportions are not equal.
As the value of p is not given in the question, we shall estimate it.
p̂ = 26+23+15+32

800 = 3
25

ni = 200; i = 1, . . . , 4

Consider Table5.18 for detailed calculations. Here k = 4 and α = 0.05. This
is a two-sided test. From TableA.9 in Appendix, we get χ2

3,0.025 = 9.348. As
D2

0 < χ2
3,0.025 so H0 is not to be rejected.

5.2 Nonparametric Statistical Tests

In all the statistical methods discussed so far, it was pre-assumed that a set of observa-
tions and some partial information about the probability distribution of the observa-
tions is known. Under the assumption that the given information is true, methodolo-
gies have been discussed to analyze the data and draw some meaningful inferences
about the unknownaspects of the probability distribution. So, thesemethods are based
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on the distribution assumption of the observations which are assumed to be known
exactly.However, in practice, the functional formof the distribution is seldomknown.
It is therefore desirable to devise methods that are free from distribution assumption.
In this section, we consider a few such methods known as nonparametric methods.

5.2.1 Sign Test

Recall that for a continuous random variable X ; the median is the value m such that
50% of the times X lies below m and 50% of the times X lies above m.

Let X1, X2, . . . , Xn be i.i.d. random variables with common pdf f . Consider the
hypothesis testing problem

H0 : m = m0

against any of the following alternate hypothesis

H1 : m �= m0 or m > m0 or m < m0.

Now, consider Xi − m0 for i = 1, 2, . . . , n. Under the null hypothesis, i.e.,m = m0,
we expect about 50% of the values xi − m0 to be greater than 0 and rest 50% to be
less than 0.

On the other hand, ifm > m0 is true, then we expect more than 50% of the values
xi − m0 to be greater than 0 and fewer than 50% to be less than 0. Similarly, for the
other case m < m0 (Table5.19).

This analysis of Xi − m0 under the three situations m = m0,m > m0, and
m < m0 forms the basis of the sign test for a median. Thus, perform the follow-
ing steps.

1. For i = 1, 2, . . . , n, calculate Xi − m0.
2. Obtain the number of terms with negative signs and call it N−.
3. Obtain the number of terms with positive sign and call it N+.

Then, if the null hypothesis is true, i.e.,m = m0, then both the variables N− and N+
follow a binomial distribution with parameters n and p = 1

2 , i.e.,

N− ∼ B

(
n,

1

2

)
and N+ ∼ B

(
n,

1

2

)
.

where α is the level of significance. The rejection region for two-sided and one-sided
tests are given in Table5.19.

Table 5.19 Testing of H0 : m = m0 against H1

If H1 Reject H0 if

m �= m0 2P(Nmin ≤ min{n−, n+}) = p − value < α two-sided test

m > m0 P(N− ≤ n−) = p − value < α one-sided test

m < m0 P(N+ ≤ n+) = p − value < α one-sided test
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Example 5.18 Historical evidences suggested that themedian length of timebetween
the arrival of two buses at bus stand was 22min. It is believed that the median length
of time is shorter than 22min. A random sample of 20 observations is obtained as
follows: Based on these data, is there sufficient evidence to conclude that the

9.4 13.4 15.6 16.2 16.4 16.8 18.1 18.7 18.9 19.1
19.3 20.1 20.4 21.6 21.9 23.4 23.5 24.8 24.9 26.8

median is shorter than 22min at 95% level of significance?

Solution:

We are interested in testing the hypothesis

H0 : m = 22 against H1 : m < 22.

In order to perform the test, we calculate xi − 22, for i = 1, 2, . . . , 20. We observe
that number of positive signs are 5. Therefore, the p-value of the test is given by
P(N+ ≤ 5) = 0.0207 where N+ ∼ B(20, 0.5). Since 0.0207 < 0.05, we reject the
null hypothesis.

5.2.2 Median Test

To test whether the median of two populations are same or not, median test is used.
Consider the hypothesis testing problem H0 : m1 = m2 against any of the following
alternate hypothesis H1 : m1 �= m2. Based on the equality, this test can also be used
to conclude whether the two samples come from the same population or not.

Let X1, X2, . . . , Xm and Y1,Y2, . . . ,Yn be two samples of size m and n. This test
is based on the 2 × 2 contingency table as follows:

1. Median M of the combined sample of size m + n is obtained.
2. Number of observations below M and above M for each sample is determined.
3. Then, the following contingency table is analyzed.

No. of observations in No. of observations in
Sample 1 Sample 2 Total

Above Median a b a + b
Below Median c d c + d

a + c = m b + d = n a + b + c + d = N

Test statistic = (ad−bc)2N
(a+c)(b+d)(a+b)(c+d)

follows χ2 distribution with 1 degree of free-
dom. Thus, decision is to reject the null hypothesis if observed value of test
statistics is greater than or equal to the critical value, i.e., χ2 > χ2

1,α. It should be
noted here that in case of ties, N is adjusted accordingly.
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Table 5.20 Example 5.19 Table for two polpulations

x 31.8 32.8 39.2 36.0 30.0 34.5 37.4

y 35.5 27.6 21.3 24.8 36.7 30.0

Example 5.19 Consider the two populations given in Table5.20. Examine if the two
data sets come from the same population or not using median test at 95% level of
significance.

Solution:

Consider the combined sample, we obtain 32.8 as the median, i.e., M = 32.8. Since,
there is tie, we will consider 12 observations for contingency table. The value of test
statistics is given by

No. of observations in No. of observations in
x y Total

Above M 4 2 6
Below M 2 4 6

6 6 12

12(16 − 4)2

6.6.6.6
= 1.33.

The critical value χ2
1,0.05 = 3.84. Since 1.33 < 3.84, therefore, do not reject the null

hypothesis. Thus, we can conclude that both samples come from the same population.

5.2.3 Kolmogorov Smirnov Test

Consider a Goodness of Fit problem where we want to test the hypothesis that the
sample comes from a specified distribution F0 against the alternative that it is from
some other distribution F , where F(x) �= F0(x) for some x ∈ R.

Let X1, X2, . . . , Xn be a sample fromdistribution F , and let F∗
n be a corresponding

empirical distribution function. The statistic

Dn = sup
x

‖F∗
n (x) − F(x)‖

is called the two-sided Kolmogorov3–Smirnov statistic. Similarly, one-sided
Kolmogorov–Smirnov statistics are given as

3Andrey Nikolaevich Kolmogorov (1903–1987) was a twentieth century Russian mathematician
who made a significant contribution to the mathematics of probability theory. Kolmogorov was the
receipient of numerous awards and honors including Stalin Prize (1941), Lenin Prize (1965), Wolf
Prize (1980), and Lobachevsky Prize (1987).
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D+
n = sup

x
[F∗

n (x) − F(x)],

and
D−

n = sup
x

[F(x) − F∗
n (x)].

Theexact distributionof Dn for selectedvalues ofn andα has been tabulatedbyMiller
(1956) and Owen (1962). Let Dn,α be the upper α-percent point of the distribution of
Dn , that is P(Dn > Dn,α) ≤ α. This can be seen from the TableA.14 inAppendix for
different α and n. Similarly, the critical values of D+

n,α are also available for selected
value of n and α.

To test H0 : F(x) = F0(x) for all x at level α, the KS test rejects H0 if Dn > Dn,α .
Similarly, it rejects F(x) ≥ F0(x) for all x if D−

n > D+
n,α and rejects F(x) ≤ F0(x)

for all x at level α if D+
n > D+

n,α .

Example 5.20 Consider the data arranged in ascending order given below

− 0.9772,−0.8027,−0.3275,−0.2356,−0.2016,−0.1601, 0.1514,

0.2906, 0.3705, 0.3952, 0.4634, 0.6314, 1.1002, 1.4677, 1.9352.

Test whether the data come from standard normal distribution or not at the signifi-
cance level 0.01.

Solution:

x F0(x) F∗
15(x) i/15 − F0(xi ) F0(xi ) − (i − 1)/15

−0.9772 0.1642 1
15 −0.0976 0.1642

−0.8027 0.2111 2
15 −0.0777 0.1444

−0.3275 0.3716 3
15 −0.1716 0.2383

−0.2356 0.4068 4
15 −0.1401 0.2068

−0.2016 0.4201 5
15 −0.0868 0.1534

−0.1601 0.4364 6
15 −0.0364 0.1031

0.1514 0.5601 7
15 −0.0935 0.1602

0.2906 0.6143 8
15 −0.0810 0.146

0.3705 0.6444 9
15 −0.0444 0.1112

0.3952 0.6536 10
15 0.0130 0.0536

0.4634 0.6785 11
15 0.0548 0.0118

0.6314 0.7361 12
15 0.0639 0.0028

1.1002 0.8644 13
15 0.0023 0.0644

1.4677 0.9289 14
15 0.0044 0.0622

1.9352 0.9735 15
15 0.0265 0.0402
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D−
15 = 0.0639, D+

15 = 0.2383, D15 = 0.2383. Let the significance level be α = 0.01,
then D15,0.01 = 0.404. Since 0.2383 < 0.404, we cannot reject H0 at 0.01 level.

5.2.4 Mann Whitney Wilcoxon U Test

Suppose, we have two samples {x1, . . . , xm} and {y1, . . . , yn} of sizem and n, respec-
tively, from two groups from two populations. TheMannWhitney test compares each
observation in one sample to each observation in the other sample. The total number
of pairwise comparisons is, therefore, mn.

If both the samples have same median, there is equal probability that Xi is greater
or smaller than Y j for each pair (i, j). Thus, we have

H0 : P(Xi > Y j ) = 0.5 against H1 : P(Xi > Y j ) �= 0.5

The test statistic is the number of values of Xi , X2, . . . , Xm that are smaller than
each of Y1,Y2, . . . ,Yn , i.e, we count the number of times xi is less than a y j . The
statistic U is called the Mann-Whitney statistic where

U =
m∑
i=1

n∑
j=1

T (Xi ,Y j )

where T (Xi ,Y j ) is defined as

T (Xi ,Y j ) =
{
1, if Xi < Y j

0, if Xi ≥ Y j
.

For larger values of m, n, i.e., (m, n > 8), the distribution of U is approximated by
a normal random variable, i.e., under H0, we have

U
mn − 1

2√
(m+n+1)
12mn

→ N (0, 1)

such that m
(m+n)

→ constant.

Example 5.21 Two samples are as follows:

Values of Xi : 1, 2, 3, 5, 7, 9, 11, 18

Values of Y j : 4, 6, 8, 10, 12, 13, 14, 15, 19

Test the hypothesis at 95% level of significance that the two samples come from the
same population.
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Solution:

Thusm = 8, n = 9,andU = 3 + 4 + 5 + 6 + 7 + 7 + 7 + 7 + 8 = 54.Let us apply
the normal approximation. We have the value of test statistics as

z0 =
54
8.9 − 1

2√
(8+9+l)
12.8.9

= 1.732.

FromTableA.7 inAppendix, P(Z > 1.732) = 0.042. Since 0.042 < 0.05, we reject
the null hypothesis.

5.3 Analysis of Variance

Consider the following example to understand why analysis of variance is an impor-
tant hypothesis test which is different from the other tests. An institute is planning to
purchase, in quantity, one of the four different tutorial packages designed to teach a
particular programming language. Some faculties from the institute claim that these
tutorial packages are basically indifferent in the sense that the one chosen will have
little effect on the final competence of the students. To test this hypothesis, the insti-
tute decided to choose 100 of its students and divided them randomly into four groups
of size 25 each. Each member in i th group will then be given i th tutorial package,
i = 1, 2, 3, 4, to learn the new language. Once the semester is over, a comprehen-
sive exam will be taken. The institute wants to analyze the results of this exam to
determine whether the tutorial packages are really indifferent or not. How can they
do this?

As the students are distributed randomly into four groups, it is probably reasonable
to assume that the score of a student in the exam should follow approximately a
normal distribution with parameters that depend on the tutorial package from which
he was taught. Also, it is reasonable to assume that the average score of a student
will depend on the tutorial package he/she was exposed to, whereas the variability
in the test score will result from the inherent variation of 100 students and not from
the particular package used.

Analysis of variance or ANOVA is a technique that can be used to check such
hypothesis.

Definition 5.3 ANOVA is a technique to test a hypothesis regarding the equality
of two or more populations (or treatments) means by analyzing the variances of
the observed samples. It allows us to determine whether the difference between the
samples are simply due to random errors or due to systematic treatment effects that
cause the mean in one group to differ from the mean in another case.
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Theory and Mathematical Analysis

Suppose that we have been provided samples of size ‘n’ from ‘k’ distinct populations
or groups and that we want to test the hypothesis that the ‘k’ population means are
equal. H0 : μ1 = μ2 = μ3 = · · · · · · = μk

H1: At least one pair of sample means is significantly different.
In the ANOVA test, we want to compare between-group variance (BGV—

Variation between respective group means) and within-group variance (WGV—
Variance of a group/sample).

Let group mean x̄i = xi1+xi2+xi3+···+xin
n i = 1, 2, . . . , k (These are group means for

each of the ‘k’ groups). Let grand mean be x̄G = 1
N

k∑
j=1

n∑
i=1

xi j (Mean of values from

all ‘k’ groups), where N = k.n.

As all samples are of the same size ‘n’, x̄G =

k∑
i=1

x̄i

k . Since there are a total of kn
independent observations, it follows that

1. Sum of Squaresbetween : It is the sum of the squared deviation of each group mean
from the grand mean, multiplied by ‘n’—the size of each group. It is also called
the treatment term.

SSb = n
k∑

i=1

(x̄i − x̄G)2.

2. Sum of Squareswithin : It is the sum of the squared deviation of each individual
value ‘xi j ’ from its respective group mean. It is also called the error term.

SSw =
k∑

i=1

n∑
j=1

(xi j − x̄i )
2.

3. Sum of Squarestotal or SStotal =
k∑

i=1

n∑
j=1

(xi j − x̄G)2.

We have the following results:

SSb + SSw = SStotal

where, degrees of freedom of SSb: dfb = k − 1, degrees of freedom of SSw:
dfw = k(n − 1) = N − k. The statistics

mean squarebetween : MSbetween = SSb
d fb

and mean squarewithin : MSwithin = SSw
d fw

.
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Table 5.21 Example5.22 Prices of clothes of different brands

Brand A Brand B Brand C

15 39 65

12 45 45

14 48 32

11 60 38

The test statistic of ANOVA is the F-statistic

F0 = MSbetween
MSwithin

.

For given level of significance α, if the test statistic F0 ≥ Fk−1,N−k,α , then H0 is
rejected. Fk−1,N−k,α can be looked up from the F statistic tables in Appendix.

Remark 5.7 • In the above construction of equality of the different means of various
distributions, the ANOVA comes under the analysis of one-factor experiment.

• This test works quitewell even if the underlying distributions are nonnormal unless
they are highly skewed or the variances are quite different. In these cases, we need
to transform the observation to make the distribution more symmetric about the
variances.

Example 5.22 Prices (in Rs.) of towel clothes from various brands are shown in
Table5.21: Using the method of ANOVA, test the appropriate hypothesis at 5% level
of significance to decide if the mean prices of Brand A, B, and C differ.

Solution:

Consider following hypothesis testing
H0 : μ1 = μ2 = μ3

H1: At least one pair of sample means is significantly different.
Computing group means,

x̄ A = 15 + 12 + 14 + 11

4
= 13

x̄B = 39 + 45 + 48 + 60

4
= 48

x̄C = 65 + 45 + 32 + 38

4
= 45.

Computing grand mean

x̄G = x̄ A + x̄B + x̄C
3

= 35.33.
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Now, computing SSb

SSb = n
k∑

i=1

(x̄i − x̄G )2 = 4((13 − 35.33)2 + (48 − 35.33)2 + (45 − 35.33)2) = 3010.67.

and SSw =
k∑

i=1

n∑
j=1

(xi j − x̄i )
2.

The intermediate calculations are shown in Tables5.22 and 5.23. In this problem,
SSw = 10 + 234 + 618 = 862. There are k = 3 groups (A, B,C) and N = 12. From
TableA.11 in Appendix, for α = 0.05, we have F2,9,0.05 = 4.2565. As F0 > F2,9,0.05,
H0 is to be rejected.

Example 5.23 Consider three hostels Tapti, Narmada, and Krishna at IIT Madras.
We want to compare the health of the students in these three hostels on the basis of
following weights (in Kg): Let us assume that α = 0.01 and

Tapti 77 81 71 76 80
Narmada 72 58 74 66 70
Krishna 76 85 82 80 77

Xi j ∼ N (μi , σ
2), i = 1, 2, . . . , k.

Solution:

Here, x̄1. = 77,x̄2. = 68, x̄3. = 80 and x̄.. = 75. α = 0.01; F2,12,0.01 = 6.93 (from
TableA.12)

Table 5.22 Example5.22 Initial calculations

A (xi − x̄ A)2 B (xi − x̄B)2 C (xi − x̄C )2

15 4 39 81 65 400

12 1 45 9 45 0

14 1 48 0 32 169

11 4 60 144 38 49

x̄ A = 13 10 x̄B = 48 234 x̄C = 45 618

Table 5.23 Example5.22 ANOVA calculations

SSb = 3010.67 d fb = k − 1 = 2 MSb = SSb
d fb

=
1505.34

F0 = MSb
MSw

= 15.72

SSw = 862 d fw = N − k = 9 MSw = SSw
d fw

= 95.78
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SSb = 390 d fb = k − 1 MSb = SSb
d fb

F0 = MSb
MSw= 2 = 195 = 8.48

SSw = 276 d fw = N − k MSw = SSw
d fw= 12 = 23

As F0 > F2,12,0.01, H0 is to be rejected.Hence,we can conclude that themeanweights
of the students were not the same for these three hostels.

Example 5.24 Firstborn children tend to develop skills faster than their younger
siblings. One possible explanation for this phenomenon is that firstborns have the
undivided attention from their parents. If this explanation is correct, then it is rea-
sonable that twins should show slower language development than single children
and that triplets should be even slower. The data given in Table5.24 were obtained
from several families. The dependent variable (data) is a measure of language skill
at the age of 3 for each child. The higher the score, better the skill.

Using the method of ANOVA, test the appropriate hypothesis at 5% level of
significance to decide if the average language skills of single children, twins, and
triplets differ.

Solution:

Consider following hypothesis testing
H0: μ1 = μ2 = μ3

H1: At least one pair of sample means is significantly different
In this problem, n = 5; N = 15; k = 3. Label 1 for Single Child, 2 for Twins and

3 for Triplet. Computing group means, we get

x̄1 = 8 + 7 + 10 + 6 + 9

5
= 8

x̄2 = 4 + 6 + 7 + 4 + 9

5
= 6

x̄3 = 4 + 4 + 7 + 2 + 3

5
= 4.

Table 5.24 Example5.24 Language skills data

Single child Twins Triplets

8 4 4

7 6 4

10 7 7

6 4 2

9 9 3
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Table 5.25 Example5.24 Initial calculations

Single (xi − x̄1)2 Twin (xi − x̄2)2 Triplet (xi − x̄3)2

8 0 4 4 4 0

7 1 6 0 4 0

10 4 7 1 7 9

6 4 4 4 2 4

9 1 9 9 3 1

x̄1 = 8 10 x̄2 = 6 18 x̄3 = 4 12

Table 5.26 Example5.24 ANOVA calculations

SSb = 40 d fb = k − 1 = 2 MSb = SSb
d fb

= 20 F0 = MSb
MSw

= 5.71

SSw = 42 d fw = N − k = 12 MSw = SSw
d fw

= 3.5

Now, computing grand mean

xG = x̄1 + x̄2 + x̄3
3

= 6.

Now, computing SSb

SSb = n
k∑

i=1

x̄i − x̄2G = 5((8 − 6)2 + (6 − 6)2 + (4 − 6)2) = 40.

Now, computing SSw

SSw =
k∑

i=1

n∑
j=1

xi j − x̄2i = 10 + 18 + 12 = 42.

The other calculations are given in Table5.25. The value of test statistics can be
obtained as shown in Table5.26. From TableA.13 in Appendix, we have F2,12,0.05 =
3.8853. Since F0 > F2,12,0.05, H0 is to be rejected.

In the above, the ANOVA technique is used to examine the effect of one inde-
pendent variable (factor) on a dependent (response) variable. As in this ANOVA
technique, the effect of one factor is investigated, this is called one-way ANOVA
technique. An extension of this is two-way ANOVA technique, where the effects of
two factors on a response variable are investigated. Many examples based on one-
way and two-way ANOVA techniques are presented in Chaps. 7 and 8, respectively.
Further, three-way ANOVA is discussed in Chap.8 with many examples in details.
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The interested readers may refer to Cassella and Berger (2002), Freund andMiller
(2004), Freund et al. (2010), Hoel et al. (1971), Medhi (1992), Meyer (1970) and
Rohatgi and Saleh (2015).

Problems

5.1 There has been a great deal of controversy in recent years over the possible
dangers of living near a high-level electromagnetic field (EMF). After hearing many
anecdotal tales of large increase among children living near EMF, one researcher
decided to study the possible dangers. In order to do his study, he followed following
steps: (a) studied maps to find the locations of electric power lines, (b) used these
maps to select a fairly large community that was located in a high-level EMF area. He
interviews people in the local schools, hospitals, and public health facilities in order
to discover the number of children who had been affected by any type of cancer
in the previous 3 years. He found that there had been 32 such cases. According
to government public health committee, the average number of cases of childhood
cancer over a 3-year period in such a community was 16.2, with a standard deviation
of 4.7. Is the discovery of 32 cases of childhood cancers significantly large enough,
in comparison with the average number of 16.2, for the researcher to conclude that
there is some special factor in the community being studied that increases the chance
for children to contract cancer? Or is it possible that there is nothing special about
the community and that the greater number of cancers is solely due to chance?

5.2 Let Y1 < Y2 < · · · < Yn be the order statistics of a random sample of size 10
from a distribution with the following PDF

f (x; θ) = 1

2
e−|x−θ |, − ∞ < x < ∞

for all real θ . Find the likelihood ratio test λ for testing H0 : θ = θ0 against the
alternative H1 : θ �= θ0.

5.3 Let X1, X2, . . . , Xn and Y1,Y2, . . . ,Yn be independent random samples from
the two normal distributions N (0, θ1) and N (0, θ2).

(a) Find the likelihood ratio test λ for testing the composite hypothesis H0 : θ1 = θ2
against the composite alternative hypothesis H1 : θ1 �= θ2.

(b) The test statistic λ is a function of which F statistic that would actually be used
in this test.

5.4 Let X1, X2, . . . , X50 denote a random sample of size 50 from a normal distri-
bution N (θ, 100). Find a uniformly most powerful critical region of size α = 0.10
for testing H0 : θ = 50 against H1 : θ > 50.
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5.5 Consider a queueing system that describes the number of telephone ongoing
calls in a particular telephone exchange. The mean time of a queueing system is
required to be at least 180s. Past experience indicates that the standard deviation of
the talk time is 5 s. Consider a sample of 10 customers who reported the following
talk time
210, 195, 191, 202, 152, 70, 105, 175, 120, 150.
Would you conclude at the 5% level of significance that the system is unacceptable?
What about at the 10% level of significance.

5.6 Let X1, X2, . . . , Xn be a random sample from a distribution with the following
PDF

f (x; θ) =
{

θxθ−1, 0 < x < ∞
0 otherwise

where θ > 0. Find a sufficient statistics for θ and show that a uniformlymost powerful
test of H0 : θ = 6 against H1 : θ < 6 is based on this statistic.

5.7 If X1, X2, . . . , Xn is a random sample from a beta distribution with parameters
α = β = θ > 0, find a best critical region for testing H0 : θ = 1 against H1 : θ = 2.

5.8 Let X1, X2, . . . , Xn denote a random sample of size 20 from a Poisson distri-

bution with mean θ . Show that the critical region C defined by
20∑
i=1

xi ≥ 4.

5.9 Let X be a discrete type random variable with PMF

P(x; θ) =
{

θ x (1 − θ)1−x , x = 0, 1
0 otherwise

.

We test the simple hypothesis H0 : θ = 1
4 against the alternative composite hypoth-

esis H1 : θ < 1
4 by taking a random sample of size 10 and rejecting H0 if and

only if the observed values x1, x2, . . . , x10 of the sample observations are such that
10∑
i=1

xi < 1. Find the power of this test.

5.10 In a certain chemical process, it is very important that a particular solution
that is to be used as a reactant has a pH of exactly 8.20. A method for determining
pH that is available for solutions of this type is known to give measurements that
are normally distributed with a mean equal to the actual pH and with a standard
deviation of .02. Suppose ten independent measurements yielded the following pH
values: 8.18, 8.17, 8.16, 8.15, 8.17, 8.21, 8.22, 8.16, 8.19, 8.18.

1. What conclusion can be drawn at the α = 0.10 level of significance?
2. What about at the α = 0.05 level of significance?
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5.11 An automobile manufacturer claims that the average mileage of its new two-
wheeler will be at least 40 km. To verify this claim 15 test runs were conducted
independently under identical conditions and the mileage recorded (in km) as: 39.1,
40.2, 38.8, 40.5, 42, 45.8, 39, 41, 46.8, 43.2, 43, 38.5, 42.1, 44, 36. Test the claim of
the manufacturer at α = 0.05 level of significance.

5.12 The life of certain electrical equipment is normally distributed. A random
sample of lives of twelve such equipments has a standard deviation of 1.3 years.
Test the hypothesis that the standard deviation is more than 1.2 years at 10% level
of significance.

5.13 Random samples of the yields from the usage of two different brands of fertil-
izers produced the following results: n1 = 10, X̄ = 90.13, s21 = 4.02; n2 = 10, Ȳ =
92.70, s22 = 3.98.Test at 1 and 5% level of significance whether the difference
between the two sample means is significant.

5.14 Consider the strength of a synthetic fiber that is possibly affected by the per-
centage of cotton in the fiber. Five levels of this percentage are considered with five
observations at each level. The data are shown in Table5.27. Use the F-test, with
α = 0.05 to see if there are differences in the breaking strength due to the percentages
of cotton used.

5.15 It is desired to determine whether there is less variability in the marks of
probability and statistics course by IITD students than in that by IITB students.
If independent random samples of size 10 of the two IIT’s yield s1 = 0.025 and
s2 = 0.045, test the hypothesis at the 0.05 level of significance.

5.16 Two analysts A and B eachmake+ve determinations of percent of iron content
in a batch of prepared ore from a certain deposit. The sample variances for A and B
turned out to be 0.4322 and 0.5006, respectively. Can we say that analyst A is more
accurate than B at 5% level of significance?

5.17 Elongation measurements are made of ten pieces on steel, five of which are
treated with method A (aluminum only), and the remaining five are method B (alu-
minumplus calcium). The results obtained are given inTable5.28. Test the hypothesis
that

1. σ 2
A = σ 2

B .
2. μB − μA = 10%.

Table 5.27 Data for Problem5.14

15 7 7 15 11 9

20 12 17 12 18 18

25 14 18 18 19 19

30 19 25 22 19 23

35 7 10 11 15 11
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Table 5.28 Data for Problem5.17

Method A 78 29 25 23 30

Method B 34 27 30 26 23

Table 5.29 Data for Problem5.18

1 0 0 1 3 4 0 2 1 4

2 2 0 0 5 2 1 3 0 1

1 8 0 2 0 1 9 3 3 5

1 3 2 0 7 0 0 0 1 3

3 3 1 6 3 0 1 2 1 2

1 1 0 0 2 1 3 0 0 2

Table 5.30 Data for Problem5.19

Day Sun Mon Tue Wed Thur Fri Sat

Number of
Earthquakes ( fi )

156 144 170 158 172 148 152

at 2% level of significance by choosing approximate alternatives.

5.18 Suppose the weekly number of accidents over a 60-week period in Delhi is
given in Table5.29. Test the hypothesis that the number of accidents in a week has
a Poisson distribution. Assume α = 0.05.

5.19 A study was investigated to see if Southern California earthquakes of at least
moderate size (having values of at least 4.4 on the Richter Scale) are more likely to
occur on certain days of the week then on others. The catalogs yielded the following
data on 1100 earthquakes given in Table5.30. Test at the 5% level of significance,
the hypothesis that an earthquake is equally likely to occur on any of the 7 days of
the week.

5.20 A builder claims that a particular brand water heaters are installed in 70% of
all homes being constructed today in the city of Delhi, India. Would you agree with
this claim if a random survey of new homes in this city shows that 9 out of 20 had
water heater installed? Use a 0.10 level of significance.

5.21 The proportions of blood types O, A, B and AB in the general population of
a particular country are known to be in the ratio 49:38:9:4, respectively. A research
team, investigating a small isolated community in the country, obtained the frequen-
cies of blood type given in Table5.31. Test the hypothesis that the proportions in this
community do not differ significantly from those in the general population. Test at
the 5% level of significance.
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Table 5.31 Data for Problem5.21

Blood type O A B AB

Frequency ( fi ) 87 59 20 4

Table 5.32 Data for Problem5.22

4 3 3 1 2 3 4 6 5 6

2 4 1 3 4 5 3 4 3 4

3 3 4 5 4 5 6 4 5 1

6 3 6 2 4 6 4 6 3 5

6 3 6 2 4 6 4 6 3 2

5 4 6 3 3 3 5 3 1 4

Table 5.33 Data for Problem5.23

Accident No accident

Cellular phone 22 278

No phone 26 374

Table 5.34 Data for Problem5.24

Smokers Nonsmokers

Lung cancer 62 14

No Lung cancer 9938 19986

5.22 Consider the data of Table5.32 that correspond to 60 rolls of a die. Test the
hypothesis that the die is fair (Pi = 1

6 , i = 1, . . . , 6), at 0.5% level of significance.

5.23 Asample of 300 cars having cellular phones and one of 400 carswithout phones
are tracked for 1 year. Table5.33 gives the number of cars involved in accidents over
that year. Use the above to test the hypothesis that having a cellular phone in your car
and being involved in an accident are independent. Use the 5% level of significance.

5.24 A randomly chosen group of 20,000 nonsmokers and one of 10,000 smokers
were followed over a 10-year period. The data of Table5.34 relate the numbers of
them that developed lung cancer during the period. Test the hypothesis that smoking
and lung cancer are independent. Use the 1% level of significance.

5.25 Apolitician claims that she will receive at least 60% o the votes in an upcoming
election. The results of a simple random sample of 100 voters showed that 58 of those
sampled would vote for her. Test the politician’s claim at the 5% level of significance.
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Table 5.35 Data for Problem5.27

Agency 1 Agency 2 Agency 3

For the pension plan 67 84 109

Against the pension
plan

33 66 41

Total 100 150 150

Table 5.36 Data for Problem5.29

Lubricant 1 Lubricant 2 Lubricant 3

Acceptable 144 152 140

Not acceptable 56 48 60

Total 200 200 200

5.26 Use the 10% level of significance to perform a hypothesis test to see if there
is any evidence of a difference between the Channel A viewing area and Channel
B viewing area in the proportion of residents who viewed a news telecast by both
the channels. A simple random sample of 175 residents in the Channel A viewing
area and 225 residents in the Channel B viewing area is selected. Each resident in
the sample is asked whether or not he/she viewed the news telecast. In the Channel
A telecast, 49 residents viewed the telecast, while 81 residents viewed the Channel
B telecast.

5.27 Can it be concluded from the following sample data of Table5.35 that the
proportion of employees favouring a new pension plan is not the same for three
different agencies. Use α = 0.05.

5.28 In a study of the effect of two treatments on the survival of patients with a
certain disease, each of the 156 patients was equally likely to be given either one of
the two treatments. The result of the above was that 39 of the 72 patients given the
first treatment survived and 44 of the 84 patients given the second treatment survived.
Test the null hypothesis that the two treatments are equally effective at α = 0.05 level
of significance.

5.29 Three kinds of lubricants are being prepared by a new process. Each lubri-
cant is tested on a number of machines, and the result is then classified as accept-
able or nonacceptable. The data in the Table5.36 represent the outcome of such
an experiment. Test the hypothesis that the probability p of a lubricant resulting in
an acceptable outcome is the same for all three lubricants. Test at the 5% level of
significance.

5.30 Twenty-five men between the ages of 25 and 30, who were participating in a
well-known heart study carried out in New Delhi, were randomly selected. Of these,
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Table 5.37 Data for Problem5.30
Smokers 124 134 136 125 133 127 135 131 133 125 118

Nonsmokers 130 122 128 129 118 122 116 127 135 120 122 120 115 123

Table 5.38 Data for Problem5.31

Method 1 6.2 5.8 5.7 6.3 5.9 6.1 6.2 5.7

Method 2 6.3 5.7 5.9 6.4 5.8 6.2 6.3 5.5

11 were smokers, and 14 were not. The data given in Table5.37 refer to readings of
their systolic blood pressure. Use the data of Table5.37 to test the hypothesis that
the mean blood pressures of smokers and nonsmokers are the same at 5% level of
significance.

5.31 Polychlorinated biphenyls (PCB), used in the production of large electrical
transformers and capacitors, are extremely hazardous when released into the envi-
ronment. Twomethods have been suggested to monitor the levels of PCB in fish near
a large plant. It is believed that each method will result in a normal random variable
that depends on themethod. Tests the hypothesis at the α = 0.10 level of significance
that both methods have the same variance, if a given fish is checked eight times by
each method with the data (in parts per million) recorded given in Table5.38.

5.32 An oil company claims that the sulfur content of its diesel fuel is at most 0.15
percent. To check this claim, the sulfur contents of 40 randomly chosen samples were
determined; the resulting samplemean, and sample standard deviation was 0.162 and
0.040, respectively. Using the five percent level of significance, can we conclude that
the company’s claims are invalid?

5.33 Historical data indicate that 4% of the components produced at a certain manu-
facturing facility are defective. A particularly acrimonious labor dispute has recently
been concluded, andmanagement is curious aboutwhether it will result in any change
in this figure of 4%. If a random sample of 500 items indicated 16 defectives, is this
significant evidence, at the 5% level of significance, to conclude that a change has
occurred.

5.34 An auto rental firm is using 15 identical motors that are adjusted to run at fixed
speeds to test three different brands of gasoline. Each brand of gasoline is assigned
to exactly five of the motors. Each motor runs on ten gallons of gasoline until it is
out of fuel. Table5.39 gives the total mileage obtained by the different motors. Test
the hypothesis that the average mileage obtained is not affected by the type of gas
used. Use the 5% level of significance.
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Table 5.39 Data for Problem5.34

Gas 1 Gas 2 Gas 3

220 244 252

251 235 272

226 232 250

246 242 238

260 225 256

Table 5.40 Data for Problem5.35

n Mean SD

Control 15 82.52 9.24

Pets 15 73.48 9.97

Friends 15 91.325 8.34

Table 5.41 Data for Problem5.36

Narmada 72 58 74 66 70

Tapti 76 85 82 80 77

Kaveri 77 81 71 76 80

5.35 To examine the effects of pets and friends in stressful situations, researchers
recruited 45 people to participate in an experiment and data are shown in Table5.40.
Fifteen of the subjects were randomly assigned to each of the 3 groups to perform
a stressful task alone (Control Group), with a good friend present, or with their dog
present. Each subject mean heart rate during the task was recorded. Using ANOVA
method, test the appropriate hypothesis at the α = 0.05 level to decide if the mean
heart rate differs between the groups.

5.36 Suppose that to compare the food quality of three different hostel students on
the basis of the weight on 15 students as shown in Table5.41.

Themeans of these three samples are 68, 80, and 77.Wewant to knowwhether the
differences among them are significant or whether they can be attributed to chance.

5.37 A fisheries researcher wishes to conclude that there is a difference in the mean
weights of three species of fish (A,B,C) caught in a large lake. The data are shown
in Table5.42. Using ANOVA method, test the hypothesis at α = 0.05 level.
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Table 5.42 Data for Problem5.37

A B C

1.5 1.5 6

4 1 4.5

4.5 4.5 4.5

3 2 5.5
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Chapter 6
Analysis of Correlation and Regression

6.1 Introduction

It is quite often that one is interested to quantify the dependence (positive or negative)
between two or more random variables. The basic role of covariance is to identify
the nature of dependence. However, the covariance is not an appropriate measure
of dependence since it is dependent on the scale of observations. Hence, a measure
is required which is unaffected by such scale changes. This leads to a new measure
known as the correlation coefficient. Correlation analysis is the study of analyzing the
strength of such dependence between the two random variables using the correlation
coefficient. For instance, if X represents the age of a used mobile phone and Y
represents the retail book value of the mobile phone, we would expect smaller values
of X to correspond to larger values of Y and vice-versa.

Regression analysis is concerned with the problem of predicting a variable called
dependent variable on the basis of information provided by certain other vari-
ables called independent variables. A function of the independent variables, say
f (X1, . . . ,Xn), is called predictor of dependent variable Y that is considered.

6.2 Correlation

Often we come across the situations where we have two related random variables X
and Y out of which only one say X is observed. Our interest is to predict the value
of Y using the observed value of X . If the joint distribution of (X ,Y ) is known,
then one can obtain the conditional distribution of Y given X and use it as a proxy
for our prediction. The conditional expectation is a reasonable guess regarding what
we might expect for Y that is E[(Y − f (X ))2] over all functions f (X ) that depends
only on X . In practice, one often restricts the choice of f to be a linear functions of
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the form a + bX where a and b are constants. The minimization of the expression
E[(Y − a − bX )2], over all values of a and b, can be explicitly carried out as follows:

E[(Y − a − bX )2] = E(Y 2 + a2 + b2X 2 − 2aY + 2abX − 2bXY )

= E(Y 2) + a2 + b2E(X 2) − 2aE(Y ) + 2abE(X ) − 2bE(XY ).

Differentiating partially w.r.t. a and b we get,

∂

∂a
E[(Y − a − bX )2] = 2a − 2E(Y ) + 2bE(X )

∂

∂b
E[(Y − a − bX )2] = 2bE(X 2) + 2aE(X ) − 2E(XY ).

Equating them to zero gives us the expressions

2b[E(X )]2 + 2aE(X ) − 2E(X )E(Y ) = 0

2b[E(X )]2 + 2aE(X ) − 2E(XY ) = 0

⇒ 2bE(X 2) − [E(X )]2 = 2[E(XY ) − E(X )E(Y )]
⇒ b̂ = CoV (XY )

VarX
∴ â = E(Y ) − bE(X ).

One can decompose Y − E(Y ) as follows:

Y − E(Y ) = Y − â − b̂E(X )

= b̂(X − E(X )) + Y − â − b̂X .

Because the cross term vanishes, we get

Var(Y ) = (Cov(X ,Y ))2

Var(X )Var(Y )
Var(Y ) +

[
1 − (Cov(X ,Y ))2

Var(X )Var(Y )

]
Var(Y ).

Definition 6.1 The Pearson’s (or linear) correlation coefficient of X and Y , denoted
by Cor(X ,Y ), or ρXY , is defined as

ρXY = Cor(X ,Y ) = Cov(X ,Y )

ρXρY
=

∑
(Xi − X )(Yi − Y )

√∑
(Xi − X )2

∑
(Yi − Y )2

= Sxy√
Sxx

√
Syy

where Sxx =
n∑

i=1

(Xi − X )2; Syy =
n∑

i=1

(Yi − Y )2; Sxy =
n∑

i=1

(Xi − X )(Yi − Y ), and

ρX and ρY are the standard deviations of X and Y , respectively.
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Table 6.1 Values of X and Y X 30 32 34 36 38 40

Y 1.6 1.7 2.5 2.8 3.2 3.5

Rewriting the earlier relation, we have

Var(Y ) = ρ2Var(Y ) + (1 − ρ2)Var(Y ).

The first term, i.e., ρ2, represents the amount of the variance reduced due to “pre-
dictable” component and the second term, i.e., (1 − ρ2), represents the residual
variance. The sign of the correlation coefficient determines whether the dependence
between the two variables is positive or negative, whereas the magnitude of the
correlation coefficient gives the strength of the dependence.

There is another measure known as the coefficient of determination which is
obtained as the square of the correlation coefficient (ρ2). This statistic quantifies the
proportion of the variance of one variable (in a statistical sense, not a casual sense)
by the other.

Example 6.1 Consider the data given in Table 6.1. Find the correlation coefficient
and coefficient of determination.

Solution:

Sxx = 70, Syy = 3.015, Sxy = 14.3.

Hence, the value of correlation coefficient and coefficient of determination, i.e., ρ

and ρ2, are given by

ρ = 14.3√
70 × 3.015

= 0.984

and
ρ2 = 0.9842 = 0.968.

From Schwartz’s inequality, it follows that −1 ≤ ρ ≤ 1. Further ρ = 1 indicates
that there is a perfect positive correlation between the variables and all the points lie
exactly on a straight line of positive slope. On the other hand, ρ = -1 signifies that
there is a perfect negative correlation between the variables and point lies on a line
with negative slope, and ρ = 0 tells us that there is no linear dependence between
the two variables under study. The sketches in Figs. 6.1, 6.2 and 6.3 indicate these
and in between cases.

Note that, linear correlation is not a good measure of the dependence of two vari-
ables. Spearman’s correlation coefficient gives us a bettermeasure of the dependence.
It is defined as follows.
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Fig. 6.1 Scatter plot when ρ = −1, 1
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Fig. 6.2 Scatter plot when ρ = −0.2, 0.6

Definition 6.2 The Spearman’s (or monotone) correlation coefficient of X and Y ,
denoted by (ρs)XY , is

(ρs)XY = ρU1U2.

where if X and Y are continuous random variables, then U1 = FX (x) and U2 =
FY (y) are uniform distributed random variables between the intervals 0 and 1.

The rationale behind the definition of the uniform correlation is based on the fact
that if two uniform random variables are monotonically dependent (i.e., either posi-
tively or negatively dependent), then they are linearly dependent. Thus, by transform-
ing X and Y into uniform random variables, their monotone dependence becomes
linear dependence.
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Fig. 6.3 Scatter plot when
ρ = 0
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Note that if the variableswere qualitative in nature, that is, nominal or ordinal, then
it would be advisable to use a nonparametric method of determining the correlation
coefficient, namely Spearman’s correlation coefficient.

6.2.1 Causality

Causality or causation indicates that the one event is the outcome of the occurrence of
some other event; i.e., there is a cause and effect relationship between the two events.
However, correlation is just a statistical measure that measures the linear relationship
between the two variables and does not mean that the change in one variable causes
the change in the other variable. Hence, correlation and casuality are two different
concepts and correlation does not imply causality. For example, we might find that
there is a positive correlation between the time spent driving on road and the number
of accidents but this does not mean that spending more time on road causes accident.
Because in that case, in order to avoid accidents one may drive fast so that time spent
on road is less.

To illustrate how two variables are related, the values of X and Y are pictured by
drawing the scatter diagram, sketching the graph of the combination of the two vari-
ables. The sample correlation coefficient r is the estimator of population correlation
coefficient ρ. If we have n independent observations from a bivariate normal distri-
bution with meansμX ,μY , variances σ 2

X , σ
2
Y and correlation coefficient ρ, one might

want to test the hypothesis ρ = 0. In this context, the null and alternative hypothesis
is H0 : ρ = 0, against H1 : ρ �= 0.
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The hypothesis can be tested using a t-statistic

T = r

SEr
(6.1)

and the measure ρ is estimated by the sample correlation coefficient r where

r = Sxy√
Sxx

√
Syy

. (6.2)

and SEr represents the standard error of the correlation coefficient

SEr =
√
1 − r2

n − 2
. (6.3)

This T -statistic has n − 2 degrees of freedom.

Example 6.2 (Parameter Estimation) The weight of lion cub per week after its birth
is given in Table 6.2. Estimate the linear regression model with weight as the depen-
dent variable. What would be the cub’s weight after 42 weeks?

Solution:

For the given data, the values of�x = 210,�y = 15.3, n = 6, Sxy = 14.3 and Sxx =
70. Using these values, we get the value of slope parameter

b̂ = Sxy
Sxx

= 14.3

70
= 0.2043.

The mean values are

x = �x

n
= 210

6
= 35,

y = �y

n
= 15.3

6
= 2.55.

Hence, we have

â = y − β̂x = 2.55 − (0.2043)(35) = −4.60.

Table 6.2 Example 6.2 - Weight of lion cub per week after its birth

Weeks 30 32 34 36 38 40

Fetal weight 1.6 1.7 2.5 2.8 3.2 3.5
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Using the estimated values of regression coefficients, we get

ŷ = â + b̂x = −4.60 + (0.2043)(42) = 3.98.

A test of the more general hypothesis ρ = ρ0 against suitable alternative is easily
conducted from the sample information. SupposeX andY follow the bivariate normal
distribution, the quantity 1

2 ln(
1+r
1−r ) is the value of a random variable that follows

approximately the normal distribution with mean 1
2 ln(

1+p
1−p ) and variance 1

n−3 . Thus,
the test procedure is to compute

Z0 =
√
n − 3

2

[
ln

(
(1 + r)(1 − ρ0)

(1 − r)(1 + ρ0)

)]
(6.4)

and compare with the critical points of the standard normal distribution. It is also
possible to obtain an approximate test of size α by using

W = 1

2
ln

(1 + ρ

1 − ρ

)
.

Note that, W has an approximate normal distribution with mean 1
2 ln

(
1+ρ

1−ρ

)
and

variance 1
n−3 . We can also test the hypothesis likeH0 : ρ = ρ0, againstH1 : ρ �= ρ0

where ρ0 is not necessarily zero. In that case, W is 1
2 ln

(
1+ρ0

1−ρ0

)
.

Example 6.3 The data in Table 6.3 were obtained in a study of the relationship
between theweight and chest size of infants at birth.Determine the sample correlation
coefficient r and then test the null hypothesis Ho : ρ = 0 against the alternative
hypothesis H1 : ρ �= 0 at a significance level 0.01.

Solution:

We can find from the given data that

x = 3.46, and y = 29.51.

Table 6.3 Data for weight and chest size of infants at birth

x (weights in kg) 2.76 2.17 5.53 4.31 2.30 3.70

y (chest size in cm) 29.5 26.3 36.6 27.8 28.3 28.6
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(x − x)(y − y) (x − x)2 (y − y)2

0.007 0.49 0
4.141 1.664 10.304
14.676 4.285 50.286
-1.453 0.722 2.924
1.404 1.346 1.464
-0.218 0.058 0.828

Sxy = 18.557, Sxx = 8.565, Syy = 65.788.

∴ ρ = Sxy√
SxxSyy

= 18.557√
(8.565)(65.788)

= 0.782.

Hence, t = √
n − 2

r√
1 − r2

= 2.509. Since, 2.504 < t0.005,4 = 4.604, we fail to

reject the null hypothesis.
The hypothesis test for the Spearman correlation coefficient is basically the same

as the test for the Pearson correlation coefficient. The standard deviation of R is
approximated by

√
1−R2

n−2 and when n is 10 or more, R is approximated by a student
t-distribution with n − 2 degrees of freedom. When the hypothesis is H0 : ρ = 0,
against H1 : ρ �= 0. The standardized t-statistic can be written as

t = R

√
n − 2

1 − R2 .

6.2.2 Rank Correlation

We know that ranking is the process of assigning ordered labels “first,” “second,”
“third,” etc., or 1, 2, 3, etc to various observations of a particular variable. In statistics,
rank correlation is a measure of this ordinal relationship, i.e., the association between
the rankings of various ordinal variables or different rankings of a particular variable.
Thus, a rank correlation coefficient gives the degree of this association between
rankings. One such correlation coefficient is Spearman’s rank difference correlation
coefficient and is denoted by R. In order to calculate R, we arrange the data in ranks
computing the difference in rank “d” for each other. R is given by the formula

R = 1 − 6

∑
i=1

(d2
i )

n(n2 − 1)
. (6.5)

Example 6.4 Consider the data given in Table 6.4. Find the Spearman rank correla-
tion coefficient.
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Table 6.4 Values of X and Y X 35 23 47 17 10 43 9 6 28

Y 30 33 45 23 8 49 12 4 31

Table 6.5 Values of X and Y X 35 23 47 17 10 43 9 6 28

Y 30 33 45 23 8 49 12 4 31

Rank of X 3 5 1 6 7 2 8 9 4

Rank of Y 5 3 2 6 8 1 7 9 4

di 2 2 1 0 1 1 1 0 0

Solution:

The calculations are given in the following Table 6.5.
Hence, the value of Spearman’s rank correlation coefficient is given by

R = 1 − 6 × 12

9 × 80
= 0.9.

Note that, if we are provided with only ranks without the values of x and y we
can still find Spearman’s rank difference correlation R by taking the difference of the
ranks and proceeding as shown above.

This produces a correlation coefficient which has a maximum value of 1, indicat-
ing a perfect positive association between the ranks, and a minimum value of −1,
indicating a perfect negative association between ranks. A value of 0 indicates no
association between the ranks for the observed values of X and Y .

6.3 Multiple Correlation

Let us consider one dependent variable and more than one independent variables.
The degree of relationship existing between the dependent variable and all the inde-
pendent variables together is called multiple correlation.

Consider three variables X1,X2, and X3 such that X1 is a dependent variable and
X2,X3 are independent variables. The linear regression equation ofX1 on independent
variables is of the form

X1 = a1.23 + a12.3X2 + a13.2X3 (6.6)

where a1.23, a12.3, a13.2 are constants to be determined. Here, a1j.k denotes the slope
of line between X1 and Xj when Xk is held constant. We can observe that variation
in X1 is partially due to X2 and partially due to X3; we call a1j.k as partial regression
coefficients of X1 on Xj keeping Xk constant.
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Following the same approach of least square approximation as we used for simple
linear regression, we can obtain the coefficients of partial regression. Let N obser-
vations on each Xi are obtained. Summing Equation (6.6) on both sides, we have

∑
X1 = a1.23N + a12.3

∑
X2 + a13.2

∑
X3. (6.7)

Multiplying Equation (6.6) by X2 and X3 successively and taking summation over N
values, we have

∑
X1X2 = a1.23

∑
X2 + a12.3

∑
X 2
2 + a13.2

∑
X2X3 (6.8)

∑
X1X3 = a1.23

∑
X3 + a12.3

∑
X2X3 + a13.2

∑
X 2
3 . (6.9)

Solving equations (6.7), (6.8) and (6.9) simultaneously,we canobtain the coefficients.

Standard Error of Estimate

Following the same approach as in simple linear regression, the standard error of
estimate of X1 on X2 and X3 can be defined as

σ1.23 =
√∑

(X1 − X1,est)
2

N

where X1,est is estimated value of X1 obtained from regression Equation (6.6).

Coefficient of Multiple Correlation

The coefficient of multiple correlation is given by

R1.23 =
√
1 − σ 2

1.23

σ 2
1

(6.10)

where σ1 represents the standard deviation of the variable X1. R2
1.23 is called the

coefficient of multiple determination. The value of R1.23 lies between 0 and 1 with
value near 1 representing the good linear relationship between the variables and value
near 0 giving the worst linear relationship. The value 0 gives no linear relationship
that does not imply independence because nonlinear relationship may be present.

Similarly, there are many situations where we have to find the correlation between
two variables after adjusting the effect of one or more independent variables. This
leads us to the concept of partial correlation.
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6.3.1 Partial Correlation

In some practical situations, we need to study the correlation between one dependent
variable and one particular independent variable keeping the effect of all other inde-
pendent variables constant. This can be done using coefficient of partial correlation.
It is given by

r12.3 = r12 − r13r23√
(1 − r213)(1 − r223)

(6.11)

where r12.3 represents the partial correlation coefficient between X1 and X2 keeping
X3 constant and rij represents the correlation coefficient between Xi and Xj.

Relationship Between Partial and Multiple Correlation Coefficient

FromEqs. (6.10) and (6.11), we can obtain the following relationship between partial
and multiple correlation coefficients:

1 − R2
1.23 = (1 − r212)(1 − r13.2)

2.

Example 6.5 The given table shows the weights (in Kg), the heights (in inches), and
the age of 12 boys.

Weight (X1) 64 71 53 67 55 58 77 57 56 57 76 68
Height (X2) 57 59 49 62 51 50 55 48 52 42 61 57
Age (X3) 8 10 6 11 8 7 10 9 10 6 12 9

(a) Find the least square regression equation of X1 on X2 and X3.
(b) Determine the estimated values of X1 from the given values of X2 and X3.
(c) Estimate the weight of a boy who is 9 years old and 54 inches tall.
(d) Compute the standard error of estimate of X1 on X2 and X3.
(e) Compute the coefficient of linear multiple correlation of X1 on X2 and X3.
(f) Also, compute the coefficients of linear partial correlation r12.3, r13.2 and r23.1.

Solution:

(a) The linear regression equation of X1 on X2 and X3 is

X1 = b1.23 + b12.3X2 + b13.2X3.

The normal equations of least square regression equation are
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∑
X1 = b1.23N + b12.3

∑
X2 + b13.2

∑
X3∑

X1X2 = b1.23
∑

X2 + b12.3
∑

X 2
2 + b13.2

∑
X2X3

∑
X1X3 = b1.23

∑
X3 + b12.3

∑
X2X3 + b13.2

∑
X 2
3 .

Computing and substituting the values from table, we get

12b1.23 + 643b12.3 + 106b13.2 = 753

643b1.23 + 34843b12.3 + 5779b13.2 = 40830

106b1.23 + 5779b12.3 + 976b13.2 = 6796.

Solving the above system of equations, we get

b1.23 = 3.6512, b12.3 = 0.8546, b13.2 = 1.5063.

The required regression equation is

X1 = 3.6512 + 0.8546X2 + 1.5063X3. (6.12)

(b) The estimated values of X1 can be obtained by substituting the corresponding
values of X2 and X3 in Eq. (6.12). The obtained values are given as

X1,est 64.414 69.136 54.564 73.206 59.286 56.925 65.717 58.229 63.153 48.582 73.857 65.920
X1 64 71 53 67 55 58 77 57 56 51 76 68

(c) Substituting X2 = 54 and X3 = 9 in Eq. (6.12), the estimated weight of the boy
is 63.356 Kg.

(d) The standard error of estimated is given by

S1.23 =
√∑

(X1 − X1,est)
2

N

=
√

(64 − 64.414)2 + · · · + (68 − 65.920)2

12
= 4.6Kg.

The population standard error of estimate is given by

Ŝ1.23 =
√

N

N − 3
S1.23 = 5.3 Kg.

(e) The coefficient of linear multiple correlation of X1 on X2 and X3 is
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R1.23 =
√
1 − S2

1.23

S2
1

=
√
1 − 4.644722

8.603522
= 0.8418.

(f) The coefficients of linear partial correlation are

r12.3 = r12 − r13r23√
(1 − r213)(1 − r223)

= 0.5334.

Similarly,
r13.2 = 0.3346 and r23.1 = 0.4580.

6.4 Regression

Sir Francis Galton coined the term “regression” in 1800s to describe a biological
phenomenon. The main purpose of regression is to explore the dependence of one
variable on another. The technique of regression, in particular, linear regression, is
the most popular statistical tool. There are all forms of regression, namely linear,
nonlinear, simple, multiple, parametric, nonparametric, etc. A regression model is
said to be linear when it is linear in parameters. For instance,

y = β0 + β1x + ε,

y = β0 + β1x1 + β2x2ε

are the linear models. In this chapter, we will look at the simplest case of linear
regression with one predictor variable.

In simple linear regression, we have a relationship of the form

Yi = β0 + β1Xi + εi (6.13)

where Yi is a random variable and Xi is another observable variable.
The quantities β0 and β1, the intercept and slope of the regression, which are

unknown parameters, are assumed to be fixed, and εi is necessarily a randomvariable.
It is also common to suppose that E(εi) = 0.

From (6.13), we have
E(Yi) = β0 + β1Xi. (6.14)

Note that, the function that givesE(Y ) is a function of x and it is called the population
regression function. Thus, Equation (6.14) defines the population regression func-
tion for simple linear regression. The fact that our inferences about the relationship
between Yi and Xi assuming knowledge of Xi, Eq. (6.14) can be written as
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E(Yi/Xi) = β0 + β1Xi. (6.15)

The Yi is called the response or dependent variable, whereas Xi is called pre-
dictor or independent variable. Recall that the word regression in connection with
conditional expectations. That is, the regression of Y on X was defined as E(Y /X ),
the conditional expectation of Y given X = x. In general, the word regression is
used in statistics to signify a relationship between variables. When we refer to linear
regression, we mean that the conditional expectation of Y given X = x is a linear
function of x. Thus, Eq. (6.15) concludes the regression is linear whenever xi is fixed
and known, and it is a realization of the observable random variable Xi. Note that, if
we assume that the pair (Xi, Yi) has a bivariate normal distribution, it immediately
follows that the regression of Y on X is linear.

In the previous sections, we have seen that correlation is a measure of the lin-
ear relationship between two variables, whereas simple linear regression is used to
predict a linear relationship between one dependent variable and one independent
variable. But in many practical situations, we have more than one independent vari-
able. For example, the credit quality of a borrower depends on many factors; the sale
of a product depends on many independent factors like advertisement, price, other
products, quality. Thus, we have to model the relationship between these and this
leads us to the concept of multiple correlation.

6.4.1 Least Squares Method

The least squares method is a method to obtain the unknown parameters such that the
mean square error is minimized. It should be considered only as amethod of “fitting a
line” to a set of data, not as a method of statistical inference. In this case, we observe
data consisting of n pairs of observations, (x1, y1), (x2, y2), . . . , (xn, yn). For instance,
consider n pairs of data points listed in Table 6.2 of Example 6.2 plotted as a scatter
plot in Fig. 6.4. Here, we estimate β0 and β1 without any statistical assumptions on
(xi,yi).

The residual sum of squares (RSS) is defined for the line y = c + dx as

RSS =
n∑

i=1

(yi − (c + dxi))
2.

The least squares estimates of β0 and β1 are defined to be those values a and b such
that the line a + bx minimizes RSS; i.e., the least squares estimates a and b satisfy

min
c,d

n∑
i=1

(yi − (c + dxi))
2 =

n∑
i=1

(yi − (a + bxi))
2.
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Fig. 6.4 Regression plot

Simple calculations yield the estimates of β0, β1, denoted by a and b, respectively,
and are given by

β̂0 = y − bx, and β̂1 = Sxy
Sxx

.

If x is the predictor variable, y is the response variable and we think of predicting y
from x, then the vertical distance measured in RSS is reasonable.

Example 6.6 It is expected that Y is linearly related to X . Determine the least square
regression line for E(Y ) on the basis of ten observations given in Table 6.6
Solution:

Here,

x = �10
i=1xi
10

= 67.5; y = �10
i=1yi
10

= 55.5

�10
i=1(xi − x)2 = 2062.5; �10

i=1(xi − x)(yi − y) = 1182.5.

Thus,

b = 1182.5

2062.5
= 0.57; a = y − bx = 17.03.

Table 6.6 Data for Y and X

i 1 2 3 4 5 6 7 8 9 10

x 45 50 55 60 65 70 75 80 85 90

y 43 45 48 57 55 57 59 63 66 68
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The estimated regression line is y = 17.03 + 0.57x.
In many situations, there is a simple response variation y, also called the depen-

dent variable, which depends on the value of a set of input, also called independent
variables x1, x2, . . . , xr . The simplest type of relationship between the dependent
variable y and the input variables x1, x2, . . . , xr is a linear relationship. That is, for
some constants β0, β1, β2, . . . , βr , the equation

y = β0 + β1x1 + β2x2 + · · · + βrxr (6.16)

will hold. However, in practice, such precision would be valid subject to random
error. That means, the explicit relationship can be written as

y = β0 + β1x1 + β2x2 + · · · + βrxr + ε (6.17)

where, ε, representing the random error is assumed to be a random variable hav-
ing mean 0. Equation (6.16) is called a linear regression equation. The regression
coefficients β0, β1, β2, . . . , βr are to be estimated from a set of data.

A regression equation containing a single independent variable, i.e., one in which
r = 1, is called a single regression equation, whereas one containing many indepen-
dent variables is called a multiple regression equation. In Chap.7, the second-order
model (quadratic model) and the third-order model (cubic model) are discussed
through examples.

6.4.2 Unbiased Estimator Method

A simple linear regression model supposes a linear relationship between the mean
response and the value of a single independent variable. It can be expressed as

y = β0 + β1x + ε. (6.18)

In this method, the random errors εi are assumed to be independent normal random
variables having mean 0 and variance σ 2. Thus, we suppose that if yi is the response
corresponding to the input values xi, then y1, y2, . . . , yn are independent and yi are
normally distributed random variables with mean β0 + β1xi and variance σ 2.

Note that, the variance of the random error is assured to be a constant and does
not depend on the input value. This value σ 2 has to be estimated from the data. Using
the least squares method, the estimator β̂1 of β1 can be expressed as
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β̂1 =

n∑
i=1

(xi − x)yi

n∑
i=1

x2i − nx2
. (6.19)

The mean of β̂1 is as follows:

E(β̂1) =

n∑
i=1

(xi − x)E(yi)

n∑
i=1

x2i − nx2
. (6.20)

Substituting E(yi) = β0 + β1xi and
∑
i

xi − x = 0, we get

E(β̂1) = β1.

Thus, β̂1 is an unbiased estimator of β1. The variance of β̂1 is given by

Var(β̂1) =
Var

(
n∑

i=1

(xi − x)yi

)

(
n∑

i=1

x2i − nx2
)2 .

Using Var(yi) = σ 2, we get

Var(β̂1) = α2

n∑
i=1

x2i − nx2
. (6.21)

Hence, the estimator of β0 is given by

β̂0 =
n∑

i=1

yi
n

− β̂1x.

This gives that β̂0 can be expressed as a linear combination of the independent normal
random variables yi, i = 1, 2, . . . , n and is thus normally distributed. Also, the mean
of β̂0 is as follows:
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E(β̂0) =
n∑

i=1

E(yi)

n
− xE(β̂1) = β0. (6.22)

Thus, β̂0 is also an unbiased estimator. The variance of β̂0 is computed (left as an
exercise) as follows:

Var(β̂0) =
σ 2

n∑
i=1

x2i

n
( n∑

i=1

x2i − nx2
) . (6.23)

In this method of unbiased estimator of regression parameter, the RSS

RSS =
n∑

i=1

(yi − y)2 − β̂1
2

n∑
i=1

(xi − x)2 (6.24)

can be utilized to estimate the unknown error variance σ 2. Indeed, it can be shown
that RSS

σ 2 has a chi-square distribution with n − 2 degrees of freedom. Hence,

E
(RSS

σ 2

)
= n − 2 or E

( RSS

n − 2

)
= σ 2. (6.25)

Thus, RSS
n−2 is an unbiased estimator of σ 2. Therefore,

σ̂ 2 = RSS

n − 2
.

Further, it can be shown that RSS is independent of the pair β̂0 and β̂1 (left as an
exercise). The fact that RSS is independent of β̂0 and β̂1 is quite similar to the
fundamental result that is normally distributed sampling X and S2 are independent.

Moreover, when the yi’s are normal distributed random variables, the least square
estimators are also the maximum likelihood estimators, consequently, the maximum
likelihood estimators of β0 and β1 are precisely the values of β0 and β1 that minimize
n∑

i=1

(yi − β0 − β1xi)
2. That is, they are least squares estimators.

Example 6.7 (Parameter estimation under unbiased estimator method) Prove that
maximum likelihood estimators of β0 and β1 are the same as those obtained from
ordinary least squares (OLS)?

Solution:

Let us assume that there are m sample points each represented by (xi, yi), i =
1, . . . ,m. It is easy to show that the regression model can be transformed into
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θT xi + εi where θ is a column vector containing α and β. This can be done by
transforming the vector of the independent variables appropriately. Now, the likeli-
hood is given by (using the information that each yi is i.i.d .):

L(θ; x) = f (Y |X ; θ) = 
m
i=1f (y

i|xi; θ) (6.26)

where

f (yi|xi; θ) = 1√
2πσ

exp

[
− (yi − θT xi)2

2σ 2

]
.

Hence,

L(θ; x) = f (Y |X ; θ) = 
m
i=1

1√
2πσ

exp

[
− (yi − θT xi)2

2σ 2

]
,

ln(L) =
m∑
i=1

(
ln

(
1√
2πσ

)
− (yi − θT xi)2

2σ 2

)
. (6.27)

The first term in the above equation is independent of θ . Thus, when we differentiate
ln(L) with respect to θ only the second term comes into picture. Since, we want
to maximize log-likelihood, we are minimizing (yi−θT xi)2

2σ 2 , which is same as OLS.
Hence, we will get the same estimates of the regression coefficients.

6.4.3 Hypothesis Testing Regarding Regression Parameters

Consider an important hypothesis regarding the simple linear regression model.

y = β0 + β1x + ε.

The null hypothesis is that β1 = 0. It is equivalent to stating that the mean response
does not depend on the input, or equivalently, that there is no regression on the input
variable.

H0 : β1 = 0, against H1 : β1 �= 0.

Now,
β̂1 − β1√

σ 2

Sxx

= √
Sxx

β̂1 − β1

σ
∼ N (0, 1) (6.28)

and is independent of
RSS

σ 2
∼ χ2(n − 2) (6.29)
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where

Sxx =
n∑

i=1

(xi − x)2 =
n∑

i=1

x2i − nx2.

Thus, from the definition of t-distribution it follows that

√
Sxx

(β̂1−β1)

σ√
RSS

σ 2(n−2)

=
√

(n − 2)Sxx
RSS

(β̂1 − β1) ∼ tn−2. (6.30)

That is,
√

(n−2)Sxx
RSS (β̂1 − β1) has a t-distributionwith n − 2 degrees of freedom. There-

fore, if H0 is true, √
(n − 2)Sxx

RSS
(β̂1) ∼ tn−2 (6.31)

which gives rise to the following test of H0. A hypothesis test of size α is to reject
H0 if √

(n − 2)Sxx
RSS

|β̂1| > t α
2 ,n−2 (6.32)

and accept H0 otherwise.
This test can be performed by first computing the value of the test statistic√

(n−2)Sxx
RSS |β̂1|—call its value v—and then rejecting H0 if the test significance level is

at least as large as p value which is equal to

pvalue = P(|Tn−2| > v) = 2P(|Tn−2 > v|) (6.33)

where T(n−2) is a t-distributed random variable with n − 2 degrees of freedom.

Remark 6.1 1. Although the t and F tests are equivalent, the t test has some advan-
tages. It may be used to test a hypothesis for any given values of β1, not just for
β1 = 0.

2. In many applications, a regression coefficient is useful only if the sign of the
coefficient agrees with the underlying theory of the model. Thus, it may be used
for a one-sided test.

Example 6.8 (Hypothesis testing for significance of regression coefficients] The esti-
mated slope coefficients for the WTI regression is 0.64 with a standard error of 0.26.
Assume that the sample consists of 36 observations, test for the significance of the
slope coefficient at 5% level of significance?

Solution:

The null and alternative hypothesis are H0 : β1 = 0 versus H1 : β1 �= 0. The test
statistics for the given data is
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t = β̂1 − β1

sβ̂1

= 0.64 − 0

0.26
= 2.46. (6.34)

This is a two-tailed t test and the critical two-tailed t value with n − 2 = 34 degrees
of freedom are ±2.03. Since test statistics is greater than the critical value, we reject
the null and conclude the slope coefficient is different from zero.

Example 6.9 Use the results given in Example 6.6 and determine the unbiased esti-
mate for σ 2.

Solution:

We have obtained previously that
n∑

i=1

(xi − x)2 = 2062.5, β̂1 = 0.57. Also,

n∑
i=1

(yi − y)2 = 680.5.

Thus, we obtain, σ̂ 2 = 1.30.

Example 6.10 [Hypothesis testing with greater than a value] For the given data of
claims and payments on settlement for crop insurance, the amounts, in units of 100
rupees, are shown in Table 6.7. Estimate the coefficients of the regression model and
conduct a test for slope parameter, testingwhetherβ1 ≥ 1 at 5% level of significance?

Solution:

For the given data, n = 10, �x = 35.4, �y = 32.87, Sxx = 8.444, Syy = 7.1588,
Sxy = 7.4502. Thus, the coefficients of the regression model are

β̂1 = 7.4502

8.444
= 0.88231,

β̂0 = 3.287 − (0.88231)(3.54) = 0.164.

The null and alternative hypothesis isH0 : β1 ≥ 1 versusH1 : β1 < 1,which is equiv-
alent to testing H0 : β1 = 1 versus H1 : β1 < 1, as mentioned in theory. The value
of σ̂ 2 = RSS

n−2 = 0.0732, and the standard error is given by:

se(β̂1) =
√
0.0732

8.444
= 0.0931. (6.35)

Table 6.7 Data for Example 6.10

Claim x 2.10 2.40 2.50 3.20 3.60 3.80 4.10 4.20 4.50 5.00

Claim y 2.18 2.06 2.54 2.61 3.67 3.25 4.02 3.71 4.38 4.45
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Thus, the test statistics is:

t0 = β̂1 − 1

se(β̂1)
= −0.11769

0.0931
= −1.264. (6.36)

From Table A.10 in Appendix, the one-tailed critical value of t0.05,8 = 1.8595. Since
t0 > t0.05,8, we fail to reject H0 : β1 ≥ 1.

6.4.4 Confidence Interval for β1

A confidence interval estimator for β1 is easily obtained from Eq. 6.30. Indeed, it
follows from Eq. (6.30) that for any α, 0 < α < 1.

P(−t α
2 ,n−2 <

√
(n − 2)Sxx

RSS
(β̂1 − β1) < t α

2 ,n−2) = 1 − α

or equivalently,

P

(
β̂1 −

√
RSS

(n − 2)Sxx
t α
2 ,n−2 < β < β̂1 +

√
RSS

(n − 2)Sxx
t α
2 ,n−2

)
= 1 − α.

A 100(1 − α)% confidence interval estimator of β1 is

(
β̂1 −

√
RSS

(n − 2)Sxx
t α
2 ,n−2, β̂1 +

√
RSS

(n − 2)Sxx
t α
2 ,n−2

)
= 1 − α.

As a remark, we observe that the result

β̂1 − β1

σ 2

Sxx

∼ N (0, 1)

cannot be directly be applied to draw inferences about β because it involves σ 2

which is an unknown. To solve this problem, we replace σ 2 by its estimator RSS
n−2

which changes the distribution of the above statistics to the t-distribution with n − 2
degree of freedom from standard normal distribution.

Example 6.11 (Confidence Interval for parameters of regression with single
regressor) The estimated slope coefficient from regression of WTI oil market on
S&P500 is 0.64 with a standard error equal to 0.26. Assuming that the sample had
32 observations, calculate the 95% confidence interval for the slope coefficient and
determine if it is significantly different from zero?
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Solution:

The confidence interval for slope coefficient β1 is:

β̂1 ± (tcsβ̂1
). (6.37)

Here β̂1 is the estimated value of the slope coefficient, sβ̂1
is its standard error and tc

is the two-tailed critical value. In this case, the critical two-tail t values are ±2.042
(from the t table with n − 2 = 30 degrees of freedom). We can compute the 95%
confidence interval as:

0.64 ± (2.04)(0.26) = (0.11, 1.17). (6.38)

Because this confidence interval does not include zero, we can conclude that the
slope coefficient is significantly different from zero.

6.4.5 Regression to the Mean

Francis Galton, while describing the laws of inheritance, coined the term regression.
He believed that these laws of inheritance made the population extremes to regress
toward the mean. In other words, the children of the individuals who have extreme
values of a particular feature would tend to have less extreme values of this particular
feature as compared to their parents.

If a linear relationship between the feature of the child (y) and that of the parent
x is assumed, then a regression to the mean will occur if the regression parameter β1

lies in the interval (0, 1). In other words, if we have

E(y) = β0 + β1x

and 0 < β1 < 1, then E(y) will be greater than x when x is small and smaller than x
when x is small.

Example 6.12 To illustrateGalton’s theory of regression to themean, a British statis-
tician plotted the heights of ten randomly chosen against the heights of their fathers
A scatter diagram representing the data is presented in Fig. 6.5

Father’s Height 60 62 64 65 66 67 68 70 72 74
Son’s Height 63.6 65.2 66 65.5 66.9 67.1 67.4 68.3 70.1 70

It can be observed from Fig. 6.5 that taller fathers tend to have taller sons. Also, it
appears that the sons of fathers, who are either extremely small or extremely tall, tend
to be more “average” as compared to the height of their fathers, that is a “regression
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Fig. 6.5 Scatter plot
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toward themean.” Now, wewill test whether the above data provide strong evidences
to prove that there is a regression toward the mean; we will use this data set to test

H0 : β1 ≥ 1 against H1 : β1 < 1

which is equivalent to a test

H0 : β1 = 1 against H1 : β1 < 1.

If not, it follows from equation (19) that when β1 = 1, the test statistic

T =
√
8SXX
RSS

(β1 − 1)

has a t-distribution with 8 degrees of freedom.
The significance level α - test will reject H0 when the value of T is sufficiently

small. The test is to reject H0 if
√

8Sxx
RSS (β1 − 1) < −tα,8 we have

√
8Sxx
RSS

(β1 − 1) = 30.2794(0.4646 − 1) = −16.213.

Since t0.01,8 = 2.896, we see that

T < −t0.01,8

and hence we can reject the null hypothesis, β1 = 1 at 99% confidence level. Also,
the pvalue
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pvalue = P(t8 ≤ −16.213)

is approximately zerowhich shows that the null hypothesis thatβ1 ≥ 1 canbe rejected
at almost any significance leve; thus, proving that there is a regression toward the
mean.

Example 6.13 (Confidence Interval for a predicted value)Given the regression equa-
tion:

ˆWTI = −2.3% + (0.64)(S&P500). (6.39)

Calculate a 95% prediction interval on the predicted value of WTI crude oil market.
Assume the standard error of forecast is 3.67 and forecasted value of S&P500 excess
return is 10%?

Solution: The predicted value for WTI is:

ˆWTI = −2.3% + (0.64)(10%) = 4.1%. (6.40)

The 5% two-tailed critical t value with 34 degrees of freedom is 2.03. The prediction
interval at the 95% confidence level is:

ˆWTI ± (tcsf ) = [4.1% ± ((2.03)(3.67%)] = 4.1% ± 7.5%. (6.41)

where tc is two-tailed critical value and sf is standard error of forecast. This range
can be interpreted as, given a forecasted value for S&P500 excess returns of 10%, we
can be 95% confident that the WTI excess returns will be between –3.4 and 11.6%.

Example 6.14 (Confidence interval for mean predicted value) For the data given
in Example 6.2, estimate the mean weight of a cub at 33 weeks. Construct a 95%
confidence interval for the same, given that the estimated value of σ̂ 2 = 0.0234?

Solution:

Recall that the estimated value for the coefficients is β̂0 = −4.60, β̂1 = 0.2043,
x = 35 and Sxx = 70. The least square regression line is ŷ = −4.60 + 0.2043x. Given
that xo = 33, so we have μ̂o = −4.60 + (0.2043)33 = 2.142. The mean weight of
the cub at 33 weeks is expected to be 2.142 kg. Now the standard error is given by

se(μ̂o) =
√(

1

n
+ (xo − x)2

Sxx

)
σ̂ 2,

se(μ̂o) =
√(

1

6
+ (33 − 35)2

70

)
0.0234 = 0.072.

(6.42)

Also,
t0.05,4 = 2.132.
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Hence 95% confidence interval is

2.142 ± (2.132)(0.072) = 2.142 ± 0.1535 ≡ (1.9885, 2.2955).

6.4.6 Inferences Covering β0

The determination of confidence intervals and hypothesis tests forβ0 is accomplished
in exactly same manner as was evaluated for β1. Specifically, (left as an exercise)

√√√√n(n − 2)Sxx∑
x2i RSS

(β̂0 − β0) ∼ tn−2

which leads to the following confidence interval estimator of α. The 100(1 − α)

confidence interval for β0 is the interval

β̂0 ±

√√√√
∑

x2i RSS

n(n − 2)Sxx
t γ

2 ,n−2.

6.4.7 Inferences Concerning the Mean
Response of β0 + β1x0

It is often of interest to use the data pairs(xi, yi), i = 1, 2, . . . , n, to estimate
β0 + β1x0, the mean response for a given input level x0. If it is a point estimator
that is desired, then the neutral estimator is A + Bx0, which is an unbiased estimator
since

E(A + Bx0) = E(A) + x0E(B) = β0 + β1x0.

Since the yi’s are independent normal random variable, and

A + Bx0 =
n∑

i=1

yi

[
1

n
− 1

Sxx
(xi − x)(x − x0)

]
.

We can show that (left as an exercise)

A + Bx0 ∼ N

(
β0 + β1x0, σ

2

(
1

n
+ (xi − x)2

Sxx

) )
.

In addition, because A + Bx0 is independent of RSS
σ 2 and
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RSS

σ 2
∼ χ2

n−2.

Hence, it follows that
A + Bx0 − (β0 + β1x0)√

1
n + (x0−x)2

Sxx

√
RSS
n−2

∼ tn−2.

Then, with 100(1 − α)% confidence, β0 + β1x0 will lie within

A + Bx0 ±
√
1

n
+ (x0 − x)2

Sxx

√
RSS

n − 2
t α
2 ,n−2.

6.5 Logistic Regression

In many practical situations, where one is interested in studying relationship between
input and output variables as in regression, the output variable is discrete rather than
a continuous variable. In particular, in many practical situations, we have a binary
output variable. Further, some of the input variables may or may not be continuous
variables. The question is how can one model and analyze such situations? In this
section, wewill address such situations where the output variable is a binary variable,
i.e., success or failure. We will assume that these experiments can be carried at
various levels and a performance of an experiment at level x results in a success with
probability p(x). In conclusion, the problem is to model the conditional probability
P(Y = 1/X = x) as a function of x when the output variable Y is a binary variable
with values 0 and 1.

The experiments comes from a logistic regression model if p(x) takes a form of
inverse logistic function, i.e.,

log
p(x)

1 − p(x)
= a + bx

which is equivalent to

p(x) = 1

[e−1(a+bx) + 1] .

We call p(x) the logistics regression function. Based on the different possible values
of b, we have the following possibilities,

1. When b = 0, p(x) is constant function.
2. If b > 0, then p(x) is an increasing function and it converges to 1 when x → ∞.
3. if b < 0, then p(x) is a decreasing function and it converges to 0 as x → ∞.
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The unknown parameters that need to be estimated in a logistic regression model
are a and b. The estimation of unknown parameters can be performed by using
the maximum likelihood estimation technique in the following manner. Suppose that
there are following levels x1, . . . , xk at which an experiment can be performed. Then,
for each data point in training data, we have observed class yi corresponding to each
feature xi. The probability of that class is either p, if yi = 1, or 1 − p, if yi = 0. The
likelihood is then

L(a, b) =
n∏

i=1

(p(xi))
yi (1 − p(xi))

1−yi .

Taking logarithm on both sides, we get the log-likelihood function as

logL(a, b) =
n∑

i=1

(yi log(p(xi)) + (1 − yi) log(1 − p(xi)))

=
n∑

i=1

log(1 − p(xi)) +
n∑

i=1

yi log

(
p(xi)

1 − p(xi)

)

=
n∑

i=1

log(1 − p(xi) +
n∑

i=1

yi(a + bxi).

The maximum likelihood estimates of the unknowns a and b can be obtained by
finding the values of a and b that maximizes the log-likelihood function given above.
But one needs to perform this numerically as closed form solutions are not available
as the log-likelihood function is nonlinear in nature.

If the function p(x) takes the following form for some constants a > 0 and b > 0

p(x) = �(a + bx) = 1√
2π

∫ a+bx

−∞
e− y2

2 dy.

Such models are known as probit models. It can be observed that p(x) is nothing but
�(a + bx) where �(·) is CDF of standard normal random variable.

The interested readers to know more about correlation and regression may refer
to Panik (2012) and Rohatgi and Saleh (2015).

Problems
6.1 A random sample of size 8 from a bivariate normal distribution yields a value of
the correlation coefficient of 0.75. Would we accept or reject at the 5% significance
level, the hypothesis that ρ = 0.

6.2 The correlation between scores on a traditional aptitude test and scores on a
final test is known to be approximately 0.7. A new aptitude test has been developed
and is tried on a random sample of 100 students, resulting in a correlation of 0.67.
Does this result imply that the new test is better?



6.5 Logistic Regression 221

Table 6.8 Data for Problem6.6

x 4 2 5 3 2 3 4 3 5 2

y 3.12 3.00 4.5 4.75 3 3.5 3.75 4.12 4.54 3.1

6.3 A sample of size 100 from a normal population had an observed correlation of
0.6. Is the shortfall from the claimed correlation of at least 0.75 significant at 5%
level of significance?What would a confidence interval for the correlation coefficient
be at 95% level of significance?

6.4 A sample of size 27 from a bivariate normal population had an observed corre-
lation of 0.2. Can you discard the claim that components are independent? Use 5%
level of significance.

6.5 Show that for any collection (X1,X2, . . . ,Xn)of randomvariables the covariance
matrix

∑
= (Cov(Xi,Xj)), which is symmetric, is always positive definite.

6.6 Students’ scores in the probability course examination, x, and on the semester
CGPA, y, are given in Table 6.8.

(a) Calculate the least square regression line for the data of Table 6.8.
(b) Plot the points and the least square regression line on the same graph.
(c) Find point estimates for β0, β1 and σ 2.
(d) Find 95% confidence interval for the α and β under the usual assumptions.

6.7 Consider the weight X1, age X2 and height X3 of 12 students of a school given
in Table 6.9. Find the least square linear regression line of X1 on X2 and X3. Also
find the coefficient of determination.

6.8 Prove that

Var(β̂0) =
σ 2

n∑
i=1

x2i

n

(
n∑

i=1

x2i − nx̄2
) .

6.9 Prove that residual sum of squares (RSS) is independent of pairs β̂0 and β̂1.

Table 6.9 Height and weight data of 12 students of a school

Weight (pounds) 74 81 63 77 65 68 87 67 66 61 86 78

Age (years) 9 11 7 12 9 8 11 10 11 7 13 10

Height (inches) 52 54 44 57 46 45 50 43 47 37 56 52
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Chapter 7
Single-Factor Experimental Design

7.1 Introduction

Often, we wish to investigate the effect of a factor (independent variable) on a
response (dependent variable). We then carry out an experiment where the levels
of the factor are varied. Such experiments are known as single-factor experiment.
There are many designs available to carry out such experiment. The most popu-
lar ones are completely randomized design, randomized block design, Latin square
design and balanced incomplete block design. In this chapter, we will discuss these
four designs along with the statistical analysis of the data obtained by following such
designs of experiments.

7.2 Completely Randomized Design

This is a very important single-factor experimental design. This design includes two
basic principles of design of experiments, that are, randomization and replication.
They are discussed below.

Randomization refers to random allocation of the experimental materials to dif-
ferent objects of comparison (treatments) in an experiment. Let us illustrate this
with the help of an example. Suppose an agricultural scientist wishes to know if
the quantity of a fertilizer affects the yield of a crop. He divides a large agricultural
plot into 32 = 9 subplots and allocates the nine subplots to three different quantities
(A1,A2, andA3) of the fertilizer (treatments) randomly. This is shown in Fig. 7.1.
Sometimes, randomization also refers to performing the individual runs or trials of
the experiment randomly. Let us illustrate this with the help of an example. Suppose
a product development engineer wishes to examine if the percentage of jute fibers
determine the tensile strength of jute–polypropylene composites. She carries out nine
runs with three levels (5, 10, and15%) of jute fiber percentage and three replicates.
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Fig. 7.1 Random allocation
of treatments to plots

Table 7.1 Experimental run
numbers

Jute fiber
percentage

Experimental run number

5 1 2 3

10 4 5 6

15 7 8 9

The experimental run numbers are shown in Table7.1. The tensile strength of thus
prepared nine specimens is carried out randomly such that the specimens prepared
by experimental run numbers 5, 1, 7, 2, 4, 6, 8, 3, 9 are tested as per the following
test sequence: 1, 2, 3, 4, 5, 6, 7, 8, 9. Randomization can be done by using tables of
random numbers or computer programs based on random number generators. Ran-
domization is very important as far as the statistical methods of data analysis are
concerned. In many statistical methods of data analysis, it is assumed that the obser-
vations (errors) are independently distributed random variables and randomization
makes this assumption valid. Also, randomizing the treatments over the experimental
materials averages out the effect of extraneous factors over whichwe have no control,
including rise or fall of environmental conditions, drift in calibration of instruments
and equipments, fertility of soil. For example, suppose in the above example there is
a sudden change in relative humidity of the testing laboratory. If all specimens pre-
pared at 10% jute fiber percentage would have been tested at higher level of humidity
in the testing laboratory, there would have been a systematic bias in the experimental
results which consequently invalidates the results. Randomly testing the specimens
alleviates this problem.

Replication means repetition of the treatments under investigation. In the earlier
example of composite, replication would mean preparing a composite specimen by
keeping the amount of jute fiber as 5%. Thus, if three specimens of composite are
prepared each by keeping the amount of jute fiber as 5%, we say that three replicates
are obtained. As known, replication has two important properties. First, it permits us
to obtain an estimate of experimental error. The estimate of error becomes a basic unit
of measurement for determining whether the observed differences are statistically
significant. Second, if the sample mean is used to estimate the effect of a factor in the
experiment, replication permits the experimenter to obtain a more precise estimate
of the effect. As known, the variance of sample mean decreases with the increase in
the number of replicates. This is shown below.

σ 2
ȳ = σ 2

n
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where σ 2
ȳ denotes the variance of samplemean ȳ, σ 2 indicates the variance of individ-

ual observations, and n refers to the number of replicate. Note that the replicates are
different from the repeated measurements. Suppose a large sample of composite is
prepared by keeping the amount of jute fibers as 5%, then the large sample is divided
into four small samples and finally the tensile strength of the four small samples is
obtained. Here, the measurements on the four samples are not replicates but repeated
measurements. In this case, the repeated measurements reflect the variability within
runs, while the replicates reflect the variability between and (potentially) within runs.
Let us take one more example. Suppose a cotton fiber is measured for its length three
times. These measurements are not replicates, they are a form of repeated mea-
surements. In this case, the observed variability in the three repeated measurements
indicates the inherent variability in measurement or gauge of the length tester.

7.2.1 A Practical Problem

A product development engineer was interested in investigating the filtration effi-
ciency of fibrous filter media that were suitable for HVAC filtration application. He
knew that the filtration efficiency was affected by the shape of cross-section of fibers
that were used to prepare the filter media. He then decided to prepare fibrous fil-
ter media by mixing fibers of deep-groove cross-section and circular cross-section
in different weight proportions. He chose five levels of weight percentage of deep-
grooved fibers (0, 25, 50, 75, 100) and prepared five specimens at each of the five
levels of weight percentage of deep-grooved fibers. He thus prepared 25 specimens
as shown in Table7.2.

The 25 specimens were prepared in a random manner. This was done by using a
random number table. By using this table, a random number between 1 and 25 was
selected. Suppose a number 11was selected, then, specimen number 11was prepared
first. By using the table, the engineer selected another random number between 1
and 25. Suppose this number was 16. Then, specimen number 16 was prepared. This
process was repeated until 25 specimens were assigned run numbers randomly. The
only restriction on randomization was that if the same number was drawn again, it
was discarded. In this way, the runs were made as shown in Table7.2. The random-
ization was necessary to average out the effect of any extraneous factor over which
the experimenter had no control, for example, sudden rise or fall in environmental
conditions, drift in processing equipments, etc. Also, randomization was required so
far the statistical methods of data analysis were concerned. As known, many statisti-
cal methods of data analysis demand that the experimental errors are independently
distributed random variables and randomization makes this assumption valid.
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Table 7.2 Specimen numbers versus run numbers

Specimen
no.

Weight percentage of fibers Run no. Specimen
no.

Weight percentage of fibers Run no.

Deep-grooved Circular Deep-grooved Circular

1 0 100 19 16 75 25 2

2 0 100 20 17 75 25 12

3 0 100 22 18 75 25 3

4 0 100 9 19 75 25 10

5 0 100 15 20 75 25 16

6 25 75 4 21 100 0 13

7 25 75 6 22 100 0 11

8 25 75 17 23 100 0 25

9 25 75 24 24 100 0 18

10 25 75 7 25 100 0 21

11 50 50 1

12 50 50 8

13 50 50 5

14 50 50 23

15 50 50 14

7.2.2 Data Visualization

Table7.3 reports the filtration efficiency of the filter media. It is always better to
plot the experimental data graphically. Figure 7.2a displays the scatter diagram of
filtration efficiency against the weight percentage of deep-grooved fibers. The solid
dots denote the individual observation and the hollow circles indicate the average
filtration efficiencies. Figure 7.2b shows the box plot of filtration efficiency, to know
more about this plot, please refer to Sect. 3.2.4 in Chap.3 of this book. Both graphs

Table 7.3 Experimental results of filtration efficiency

Weight of
deep-grooved
fibers (%)

Filtration efficiency (%)

I II III IV V

0 44 47 47 45 46

25 59 57 61 53 58

50 61 59 63 58 60

75 69 66 69 67 65

100 71 74 74 72 71
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Fig. 7.2 Plots for experimental data in practical problem given in Sect. 7.2.1

indicate that the filtration efficiency increases with the increase in weight proportion
of deep-grooved fibers in the filter media. It is strongly suspected that the weight
proportion of deep-grooved fibers affects the filtration efficiency.

7.2.3 Descriptive Model

Suppose we wish to compare a treatment at different levels of a single factor x on a
response variable y. The observations are taken in a random order. The experimental
dataset would look as shown in Table7.4.

The total yi. and average yi. are obtained as follows

Table 7.4 Data for single-factor experiment

Treatment
(Level)

Observations Total Average

1 y11 y12 . . . y1n y1. y1.
2 y21 y22 . . . y2n y2. y2.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

a ym1 ym2 . . . ymn ym. ym.

y.. y..



228 7 Single-Factor Experimental Design

yi. =
n∑

j=1

yij, i = 1, 2, . . . ,m and yi. = yi.
n

The grand total y.. and grand average y.. are obtained as follows

y.. =
m∑

i=1

n∑

j=1

yij and y.. = y..

mn
= y..

N
,

where N = mn.
The observations of the experiment can be described by the following linear

statistical model

yij = μ + τi + εij; i = 1, 2, . . . ,m; j = 1, 2, . . . , n

where yij is a randomvariable denoting the ijth observation,μ is a parameter common
to all levels called the overall mean, τi is a parameter associated with the ith treatment
(level) called the ith treatment (level) effect, and εij is a random error component.

The model can also be written as

yij = μi + εij; i = 1, 2, . . . ,m; j = 1, 2, . . . , n

where μi = μ + τi is the mean of ith level.
The model can describe two situations depending on how the treatments are cho-

sen. Suppose that the model involves specifically chosen treatments (levels) of a
factor, then its conclusion is limited to these levels of the factor only. It means that
conclusions cannot be extended to similar treatments (levels) that are not explicitly
considered. In such cases, the levels of the factor are said to be fixed and the model is
called fixed effect model. On the other hand, suppose that the model involves levels
of a factor chosen from a larger population of levels of that factor, then its conclusion
can be extended to all levels of the factor in the population, whether or not they are
explicitly considered in the experiment. Then, these levels of the factor are said to
be variables and the model is called random effect model. Needless to say that the
analysis of the model changes if the type of model changes. Here, we will discuss
the analysis of a fixed effect model. This means that our conclusions will be valid
only for the treatments or levels chosen for the study.

The followings are the reasonable estimates of the model parameters

μ̂ = y..

τ̂i = yi. − y.., i = 1, 2, . . . , k

μ̂i = μ̂ + τ̂i = yi., i = 1, 2, . . . , k

The estimate of the observations is ŷij = μ̂ + τ̂i = y.. + yi. − y.. = yi..
Hence, the residual is eij = yij − ŷij.
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These formulas are used to estimate the observations and the residuals. Table7.5
compares the estimated observations with the actual ones and also reports the resid-
uals. The estimated observations are placed within parentheses, and the residuals are
shown at the bottom of each cell.

It is necessary to check whether the model is adequate. The adequacy of a model
is investigated by examining the residuals. If the model is adequate then the residuals
should be structureless; that is, they should not followany trend or pattern. Figure 7.3a
plots the residuals against the run numbers. It can be observed that the residuals
do not follow any specific trend or pattern. Plotting the residuals against the time
order of experiments is helpful in detecting the correlation between the residuals. A
tendency to have runs of positive and negative residuals indicates positive correlation.
Such a pattern would indicate that the residuals are not independent. The violation of
independence assumption on the residuals is potentially a serious problem, andproper
randomization of the experiment is an important step in obtaining independence.
It can be seen from Fig. 7.3a that there is no reason to suspect any violation of
independence assumption on the residuals. There is one more check for the residuals
to display structureless character. The residuals should not be related to any other
variable including the predicted response. A simple check for this is to plot the
residuals versus the fitted responses, and it should not reveal any obvious pattern.
Figure 7.3b plots the residuals versus the fitted responses. It can be observed that no
obvious pattern is seen. Also, it is important to check if the residuals can be regarded
as taken from a normal distribution or not. Figure 7.4 plots the normal probability plot
of the residuals. However, it can be observed that this plot is not grossly nonnormal.

Table 7.5 Data and residuals for filtration efficiency

Weight of
deep-grooved
fibers (%)

Filtration efficiency (%)

I II III IV V

0 44 (45.8) 47 (45.8) 47 (45.8) 45 (45.8) 46 (45.8)

−1.8 1.2 1.2 −0.8 0.2

25 59 (57.6) 57 (57.6) 61 (57.6) 53 (57.6) 58 (57.6)

1.4 −0.6 3.4 −4.6 0.4

50 61 (60.2) 59 (60.2) 63 (60.2) 58 (60.2) 60 (60.2)

0.8 −1.2 2.8 −2.2 −0.2

75 69 (67.2) 66 (67.2) 69 (67.2) 67 (67.2) 65 (67.2)

1.8 −1.2 1.8 −0.2 −2.2

100 71 (72.4) 74 (72.4) 74 (72.4) 72 (72.4) 71 (72.4)

−1.4 1.6 1.6 −0.4 −1.4
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Fig. 7.3 Plots for residuals

Fig. 7.4 Normal probability
plot of residuals for filtration
efficiency
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7.2.4 Test of Hypothesis

The detailed discussion on testing of hypothesis is given in Chap.5. Here, we are
giving a brief introduction. Suppose we are interested in testing the equality of
treatmentmeans of a single factor x on a response variable y. Often,we select a sample
from a population, carry out experiment, and see that the sample treatment means
are different. Then, an obvious question arises regarding whether the population
treatment means are different or not. In order to answer such a question, a statistical
test of hypothesis is carried out.

The statistical test of hypothesis is conducted in five steps—Step 1: State the
statistical hypothesis, Step 2: Select the level of significance to be used, Step 3: Find
out the value of the test statistic, Step 4: Specify the critical region to be used, Step
5: Take a decision.

In the first step, it is necessary to state the hypothesis. The null hypothesis states
that there is nodifference among thepopulation treatmentmeans.This null hypothesis
is tested for possible rejection under the assumption that the null hypothesis is true. If
this null hypothesis is proved to be false, then the alternative hypothesis is accepted.
The alternative hypothesis is complementary to null hypothesis. It states that there is
a difference between the population treatmentmeans for at least a pair of populations.

In the second step, the level of significance, usually denoted byα, is stated in terms
of some small probability value such as 0.10 (one in ten) or 0.05 (one in twenty)
which is equal to the probability that the test statistic falling in the critical region, thus
indicating falsity of the null hypothesis. The selection of the level of significance is
critical. This can be understood with a view to the errors associated with the testing
of hypothesis.

There are two types of errors involved in test of hypothesis. They are described
in Table7.6. The error committed by rejecting the null hypothesis when it is true is
called Type I error, and the error committed by accepting the null hypothesis when
it is false is called Type II error. In situations where Type I error is possible, the level
of significance α represents the probability of such an error. The higher is the value
of level of significance, the higher is the probability of Type I error. Here, α = 0
means complete elimination of occurrence of Type I error. Of course, it implies that
no critical region exists; hence, the null hypothesis is retained always. In this case, in
fact, there is no need to analyze or even collect any data at all. Obviously, while such
a procedure would completely eliminate the possibility of making a Type I error, it

Table 7.6 Errors in test of hypothesis

Possibilities Course of Action

Null hypothesis
is true.

Accept
(Desired correct action)

Reject
(Undesired erroneous action)

Null hypothesis
is false.

Accept
(Undesired erroneous action)

Reject
(Desired correct action)
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does not provide a guarantee against error, for every time that the null hypothesis
stated is false, a Type II error would necessarily occur. Similarly, by letting α = 1, it
would be possible to eliminate entirely the occurrence of Type II error at the cost of
committing a Type I error for every true null hypothesis tested. Thus, the choice of a
level of significance represents a compromise effect at controlling the two types of
errors that may occur in testing statistical hypothesis. We see that for a given choice
of α , there is always a probability for Type II error. Let us denote this probability
by β. This depends on the value α chosen. The higher is the value of α, the lower is
the value of β.

The third step is related to finding the value of test statistic. The phrase test statistic
is simply used here to refer to the statistic employed in effecting the test of hypothesis.
Here, the test statistic is

F0 = MSTreatments

MSError

where MSTreatments = SSTreatments

(m − 1)
=

m∑

i=1

n∑

j=1

(yi − y..)
2

k − 1

and MSError = SSError
m(n − 1)

=

m∑

i=1

n∑

j=1

(yij − yi.)
2

m(n − 1)

Generally, analysis of variance (ANOVA) table is constructed to calculate the value
of test statistic.

The fourth step is concerned with specifying a critical region. A critical region is
a portion of the scale of possible values of the statistic so chosen that if the particular
obtained value of the statistic falls within it, rejection of the hypothesis is indicated.
Here, we should reject H0 when F0 > Fα,a−1,a(n−1).

The fifth and final step is the decision making step. In this step, we refer the value
of the test statistic as obtained in Step 4 to the critical region adopted. If the value
falls in this region, reject the hypothesis. Otherwise, retain or accept the hypothesis
as a tenable (not disproved) possibility.

Let us carry out a test of hypothesis in case of filtration efficiency data given in
Table7.3.

Step 1: Statement of Hypothesis

Here, the null hypothesis states that there is no difference among the population
treatment means of filtration efficiency. This means

H0 : μ1 = μ2 = · · · = μm or, equivalently, H0 : τ1 = τ2 = · · · = τm = 0
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Table 7.7 Calculations for treatment totals and treatment means for filtration efficiency

Weight of deep-grooved
fibers (%)

Filtration efficiency (%)

I II III IV V Total Mean

0 44 47 47 45 46 229 45.8

25 59 57 61 53 58 288 57.6

50 61 59 63 58 60 301 60.2

75 69 66 69 67 65 336 67.2

100 71 74 74 72 71 362 72.4

Filtration efficiency (%) 1516 60.64

The alternative hypothesis states that there is difference between the population
treatment means for at least a pair of populations. This means

H1 : μi �= μj for at least one i and j or, equivalently,H1 : τi �= 0 for at least one i

Step 2: Selection of Level of Significance

Suppose the level of significance is chosen as 0.05. It means that the probability of
rejecting the null hypothesis when it is true is less than or equal to 0.05.
Step 3: Computation of Test Statistic

The test statistic is computed by carrying out an analysis of variance of the data.
The details of analysis of variance are given in Sect. 5.3 of this book. The basic
calculations for treatment totals and treatment means are shown in Table7.7.

The calculations for ANOVA are shown below.

SSTotal =
m∑

i=1

n∑

j=1

(yij − y)2

= (44 − 60.64)2 + (47 − 60.64)2 + (47 − 60.64)2 + (45 − 60.64)2 + (46 − 60.64)2 +
(59 − 60.64)2 + (57 − 60.64)2 + (61 − 60.64)2 + (53 − 60.64)2 + (58 − 60.64)2 +
(61 − 60.64)2 + (59 − 60.64)2 + (63 − 60.64)2 + (58 − 60.64)2 + (60 − 60.64)2 +
(69 − 60.64)2 + (66 − 60.64)2 + (69 − 60.64)2 + (67 − 60.64)2 + (65 − 60.64)2 +
(71 − 60.64)2 + (74 − 60.64)2 + (74 − 60.64)2 + (72 − 60.64)2 + (71 − 60.64)2

= 2133.76

SSTreatments = n
m∑

i=1

(yi − y)2

= 5[(45.8 − 60.64)2 + (57.6 − 60.64)2 + (60.2 − 60.64)2 + (67.2 − 60.64)2 + (72.4 − 60.64)2]
= 2054.96
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Table 7.8 ANOVA Table for filtration efficiency

Source of
variation

Sum of squares Degree of
freedom

Mean square F0

Fiber weight
percentage

2054.96 4 513.74 130.39

Error 78.8 20 3.94

Total 2133.76 24

Fig. 7.5 Display of critical
region

SSError = SSTotal − SSTreatments = 2133.76 − 2054.96 = 78.8

The calculations are summarized in Table7.8.

Step 4: Specification of Critical Region

The null hypothesis is rejected if F0 > Fα,m−1,m(n−1) = F0.05,5−1,5(5−1) = 2.87
(Table A.11). The critical region is shown in Fig. 7.5.

Step 5: Take a Decision

As the value of the test statistic falls in the critical region adopted, this calls for
rejection of null hypothesis. It is therefore concluded that there is difference between
population treatment means, at least for a pair of populations.
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7.2.5 Multiple Comparison Among Treatment Means
(Tukey’s Test)

Tukey’s test compares pairs of treatment means. This test declares two means to be
significantly different if the absolute value of their difference exceeds

Tα = qα(a, f )

√
MSError

n
.

Here, qα(a, f ) is called studentized range statistic corresponding to the level of
significance ofα, a is the number of factor level, f is the degree of freedom associated
with theMSError, and n is the number of treatment levels. The numerical value of the
studentized range statistic can be obtained from Table A.17.

Here T0.05 = qα(a, f )
√

MSError
n = q0.05(5, 20)

√
3.94
5 = 3.76.

The five treatment averages are y1 = 45.8, y2 = 57.6, y3 = 60.2, y4 = 67.2,
y5 = 72.4. The differences in averages are

|y1 − y2| = 11.8∗ |y2 − y3| = 2.6 |y3 − y4| = 7∗ |y4 − y5| = 5.2∗

|y1 − y3| = 14.4∗ |y2 − y4| = 9.6∗ |y3 − y5| = 12.2∗

|y1 − y4| = 21.4∗ |y2 − y5| = 14.8∗

|y1 − y5| = 26.6∗

The starred values indicate the pairs of means that are significantly different.
Sometimes it is useful to draw a graph, as shown below, underlining pairs of means
that do not differ significantly.

y1 = 45.8, y2 = 57.6, y3 = 60.2, y4 = 67.2, y5 = 72.4

Another popular test for comparing the pairs of treatment means is Fisher’s test. This
test declares two means to be significantly different if the absolute value of their
difference exceeds the least significant difference (LSD)

LSD = t α
2 ,N−a

√
2MSError

n

Here, LSD = t α
2 ,N−a

√
2MSError

n
= t 0.05

2 ,25−5

√
2 × 3.94

5
= 2.62

(FromTableA.10, t0.025,20 = 2.086) The five treatment averages are y1 = 45.8, y2 =
57.6, y3 = 60.2, y4 = 67.2, y5 = 72.4. The differences in averages are
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|y1 − y2| = 11.8∗ |y2 − y3| = 2.6 |y3 − y4| = 7∗ |y4 − y5| = 5.2∗

|y1 − y3| = 14.4∗ |y2 − y4| = 9.6∗ |y3 − y5| = 12.2∗

|y1 − y4| = 21.4∗ |y2 − y5| = 14.8∗

|y1 − y5| = 26.6∗

The starred values indicate the pairs of means that are significantly different.

y1 = 45.8, y2 = 57.6, y3 = 60.2, y4 = 67.2, y5 = 72.4

Here, the results obtained using Fisher’s test are similar to that using Tukey’s test.

Example 7.1 The brushite cement is known to be a potential bone replacementmate-
rial. In order to examine the effect of poly(methyl methacrylate) in determining the
compressive strength of the cement, a completely randomized experiment is con-
ducted. Four levels of poly(methyl methacrylate) concentration are taken and each
treatment is replicated four times. The results are shown in Table7.9.

Solution: We are required to know if the concentration of poly(methyl methacrylate)
affects the compressive strength of the cement. Let us carry out the test of hypothesis,
described in Sect. 7.2.4.

Step 1: Statement of Hypothesis Here, the null hypothesis states that there is no
difference among the populationmean compressive strengths of the brushite cements.
The alternative hypothesis states that there is a difference between the population
treatment means for at least a pair of populations.

Step 2: Selection ofLevel of Significance Suppose the level of significance is chosen
as 0.05.

Step 3: Computation of Test Statistic The test statistic can be computed by carrying
out an analysis of variance of the data. The calculations for ANOVA are summarized
in Table7.10.

Step 4: Specification of Critical Region The null hypothesis is rejected if F0 >

F0.05,4,15 = 3.06 (Table A.11).

Table 7.9 Calculations for treatment totals and treatment means for compressive strength of
brushite cement

Concentration of
polymethyl
methacrylate (%)

Compressive strength (MPa)

I II III IV

30 20 21 19 22

35 27 26 29 28

40 32 34 30 33

45 42 40 44 43

50 28 32 30 26
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Table 7.10 ANOVA table for compressive strength of brushite cement

Source of
variation

Sum of squares Degree of
freedom

Mean square F0

Concentration of
poly(methyl
methacrylate)

1008.70 4 252.175 79.63

Error 47.50 15 3.167

Total 1056.20 19

Step 5: Take a Decision As the value of the test statistic falls in the critical region
adopted, this calls for rejection of null hypothesis. It is therefore concluded that there
is difference between population treatment means, at least for a pair of populations.

Example 7.2 Consider Example 7.1. Let us find out which of the means are signifi-
cantly different by applying Tukey’s test, as described in Sect. 7.2.5. Here, the mean
compressive strengths are given below.

y1 = 20.5, y2 = 27.5, y3 = 32.25, y4 = 42.25, y5 = 29.

The numerical value of the studentized range statistic is T0.05 = q0.05(5, 15) = 4.37.
The differences inmean compressive strengths are obtained in the followingmanner.

|y1 − y2| = 7∗ |y2 − y3| = 4.75∗ |y3 − y4| = 10∗ |y4 − y5| = 13.25∗

|y1 − y3| = 11.75∗ |y2 − y4| = 14.75∗ |y3 − y5| = 3.25

|y1 − y4| = 21.75∗ |y2 − y5| = 1.5

|y1 − y5| = 8.5∗

The starred values indicate the pairs of means that are significantly different. Clearly,
the only pairs of means that are not significantly different are 2 and 5, and 3 and 5,
and the treatment 4 (45% concentration) produces significantly greater compressive
strength than the other treatments.

Example 7.3 Let us now apply Fisher’s test, as described in Sect. 7.2.5, to compare
among the means of compressive strength. The least significant difference (LSD)

can be found as.

LSD = t0.025,15

√
2 × 3.167

4
= 2.131 × 1.2584 = 2.68

(From Table A.10, t0.025,15 = 2.1314) In the following, the differences in mean com-
pressive strengths are shown and the pairs of means that are significantly different
are indicated by starred values.
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|y1 − y2| = 7∗ |y2 − y3| = 4.75∗ |y3 − y4| = 10∗ |y4 − y5| = 13.25∗

|y1 − y3| = 11.75∗ |y2 − y4| = 14.75∗ |y3 − y5| = 3.25∗

|y1 − y4| = 21.75∗ |y2 − y5| = 1.5

|y1 − y5| = 8.5∗

Clearly, the only one pair ofmeans that is not significantly different is 2 and 5, and the
treatment 4 (45% concentration) produces significantly greater compressive strength
than the other treatments.

Example 7.4 Let us find out a regression model to the data shown in Example 7.1.
Figure 7.6 displays a scatter diagram of compressive strength of brushite cement
versus concentration of poly(methyl methacrylate). The open circles represent the
experimental results of compressive strength of the cement obtained at different con-
centrations of poly(methylmethacrylate). The solid circles denote themean compres-
sive strength of the cement at each value of concentration of poly(methyl methacry-
late). Clearly, the relationship between compressive strength and concentration of
poly (methyl methacrylate) is not linear. As a first approximation, an attempt can be
made to fit the data to a quadratic model of the following form

y = β0 + β1x + β2x
2 + ε

where y denotes the compressive strength, x indicates concentration of poly(methyl
methacrylate), β0, β1, β2 are regression coefficients, and ε refers to error. The least
square fit of the quadratic model to the data yields

ŷ = −151.2 + 8.692x − 0.1007x2.

The method of estimation of regression coefficients is described in Sect. 9.3.2 of this
book. The behavior of the quadratic model is displayed in Fig. 7.6. As shown, it over-
estimates the compressive strength at 40% concentration of poly(methyl methacry-
late) and largely underestimates the compressive strength at 45% concentration of
poly(methyl methacrylate). Overall, it does not appear to represent the data satis-
factorily. The R2 statistic and the adjusted-R2 statistic are found to be 0.7517 and
0.5034, respectively. Afterwards, an attempt can be made to fit the data to a cubic
model of the following form

y = β0 + β1x + β2x
2 + β3x

3 + ε

where β3, a new regression coefficient, is added to the cubic term in x. The least
square fit of the cubic model to the data yields

ŷ = 697.2 − 57.32x + 1.579x2 − 0.014x3
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Fig. 7.6 Scatter diagram for
compressive strength of
brushite cement

Figure 7.6 displays the behavior of the cubic model. The cubic model fits better than
the quadratic model at 40 and 45% concentrations of poly(methyl methacrylate).
The R2 statistic and the adjusted-R2 statistic for the cubic model are found to be
0.9266 and 0.7063, respectively. Overall, the cubic model appears to be superior to
the quadratic model.

7.3 Randomized Block Design

In any experiment, there are factors that influence the outcomes although they may
not be of interest to study. Such factors are known as nuisance factors. If the nuisance
factors are unknown and uncontrollable then a design technique called randomization
is used to guard against them. However, if they are known but uncontrollable then
their effect might be compensated by a technique called analysis of covariance. If the
nuisance factors are known and controllable then a design technique called blocking
can be employed to systematically eliminate its effect on the statistical comparison
among treatments. Blocking is an important technique that has been used extensively
while conducting design of experiments. Randomized block design is a very popular
design that utilizes the principle of blocking. Let us now discuss this principle.

Blocking is used in situations where it is impossible to carry out all of the runs
in an experiment under homogeneous conditions. For example, a single batch of
raw material may not be enough large to perform all of the runs in an experiment.
Also, there are situations in which we desire to deliberately vary the experimental
conditions including machines, operators, environments. This is done to ensure that
the process or product is so robust that it is unaffected by such conditions. The
principle of experimentation used in such situations involves blocking, where each
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set of nonhomogeneous conditions defines a block. Suppose in our earlier example
of electroconductive yarns (Sect. 1.3.2 of Chap.1), the four runs in Replicate I were
performed by using the electrically conducting monomer supplied by Supplier X
and the four runs in Replicate II were conducted by using the electrically conducting
monomer supplied by Supplier Y . Then, the data would have been analyzed by
using the technique called blocking, where each block corresponded to one replicate.
Further, statistical analysis could be used to quantify the block effect. In fact, one
can find that the block effect is relatively small.

7.3.1 A Practical Problem

A process engineer wishes to investigate the effect of water removal process on the
moisture content of textile fabrics. He selects three differentwater removal processes,
namely hydro, suction, and mangle, and chooses four different types of fabrics,
namely worsted, barathea, twill, and melton. As the fabrics chosen are of different
types (nonhomogeneous), the completely randomized design seems to be inappropri-
ate. Also, the engineer wants to be sure that any effect causing due to different types
of fabrics should not have any influence on the comparison of the three processes
(treatments). He therefore wishes to use the technique of blocking and accordingly
divides the fabrics into four different blocks, depending on their types. Further, he
randomizes the order of runswithin each block.Obviously, the blocks put a restriction
on randomization. This is how typically the experiment is carried out in accordance
with a randomized block design.

7.3.2 Data Visualization

Table7.11 reports the results of the experiment (Leaf 1987). Here, the data represent
the percentage of moisture content remaining in the fabrics after removal of water.

Table 7.11 Experimental results of moisture content

Processes
(Treatments)

Fabric types (Blocks)

Worsted Barathea Twill Melton

Hydro 46 35 47 42

Suction 54 57 79 86

Mangle 56 56 61 65
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7.3.3 Descriptive Model

Suppose we have m number of treatments that are needed to be compared and n
number of blocks such that there is one observation per treatment in each block, and
the order in which the treatments are run within each block is determined randomly.
The experimental dataset looks like as shown in Table7.12.

The treatment totals yi. and treatment means yi. are obtained as follows

yi. =
n∑

j=1

yij yi. = yi.
n

, i = 1, 2, . . . ,m.

The block totals y.j and means y.j are obtained as follows

y.j =
m∑

i=1

yij, y.j = y.j

m
, j = 1, 2, . . . , n

The grand total and means are obtained as shown below

y.. =
m∑

i=1

n∑

j=1

yij =
m∑

i=1

yi. =
n∑

j=1

y.j.

y.. = y..

mn
.

The observations of the experiment can be described by the following linear statistical
model

yij = μ + τi + βj + εij; i = 1, 2, . . . ,m; j = 1, 2, . . . , n.

Table 7.12 Data for randomized block experiment

Treatment
(Level)

Observations Total Average

Block 1 Block 2 . . . Block b

1 y11 y12 . . . y1b y1. y1.
2 y21 y22 . . . y2b y2. y2.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

a ya1 ya2 . . . yab ya. ya.
Total y.1 y.2 . . . y.b y..

Average y.1 y.2 . . . y.b y..
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Here, yij is a random variable denoting the ijth observation.μ is a parameter common
to all levels called the overall mean, τi is a parameter associated with the ith level
called the ith level effect, βj is a parameter associated with jth block called jth block
effect, εij is a random error component, m denotes no. of treatments and n indicates
no. of blocks. It follows traditional fixed effect model. This model can also be written
as

yij = μij + εij; i = 1, 2, . . . ,m; j = 1, 2, . . . , n

where μij = μ + τi + βj is the mean of ijth observations.
The followings are the reasonable estimates of the model parameters

μ̂ = y..

τ̂i = yi. − y.., i = 1, 2, . . . ,m

β̂j = y.j − y.., j = 1, 2, . . . , n

μ̂ij = μ̂ + τ̂i + β̂j = y.. + (yi. − y..) + (y.j − y..) = yi. + y.j − y..

The estimate of the observations is ŷij = μ̂ + τ̂i + β̂j = yi. + y.j − y... Hence, the
residual is eij = yij − ŷij.

These formulas are used to estimate the observations and residuals. Table7.13
compares the estimated observations with the experimental ones and also reports the
residuals. Here, in each cell, three values are reported for a given process and for a
given fabric type. The leftmost value is obtained from experiment, the middle one is
the fitted value, and the rightmost value represents the residual.

It is necessary to check whether the model is adequate. The adequacy of a model
is investigated by examining the residuals. If the model is adequate then the residuals
should be structureless, that is, they should not follow any trend or pattern. Figure 7.7a
plots the residuals against treatments. It can be observed that the residuals do not
follow any specific trend or pattern with respect to treatments as well as blocks
(Fig. 7.7b). Figure 7.7c does not display any trend or pattern when the residuals are
plotted against the fitted responses. Further, it is important to check if the residuals

Table 7.13 Data and Residuals for moisture content

Processes
(Treatments)

Fabric types (Blocks)

Worsted Barathea Twill Melton

Hydro 46 37.5 8.5 35 34.8 0.2 47 47.8 −0.8 42 49.8 −7.8

Suction 54 64 −10 57 61.3 −4.3 79 74.3 4.7 86 76.3 9.7

Mangle 56 54.5 1.5 56 51.8 4.2 61 64.8 −3.8 65 66.8 −1.8
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Fig. 7.7 Plots for residuals

can be regarded as taken from a normal distribution or not. Figure 7.7d plots the
normal probability plot of the residuals. It can be concluded that the residuals are
taken from a normal distribution.

7.3.4 Test of Hypothesis

As mentioned in Chap.7, the test of hypothesis is hereby carried out in the following
manner.

Step 1: Statement of Hypothesis
We are interested in testing the equality of population treatment means of moisture
content in fabrics. Then, the null hypothesis is that there is no difference among the
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Table 7.14 Calculations for treatment and block totals and means for moisture content data

Processes
(Treat-
ments)

Fabric types (Blocks) Total Mean

Worsted Barathea Twill Melton

Hydro 46 35 47 42 170 42.5

Suction 54 57 79 86 276 69

Mangle 56 56 61 65 238 59.5

Total 156 148 187 193 684

Mean 52 49.3 62.3 64.3 57

population treatment means. This is stated as follows

H0 : μ1 = μ2 = · · · = μm or, equivalently, H0 : τ1 = τ2 = · · · = τm = 0

The alternative hypothesis states that there is a difference between the population
treatment means for at least a pair of populations.This can written as

H1 : μi �= μj for at least one i and j or, equivalently,H1 : τi �= 0 for at least one i

Step 2: Selection of Level of Significance
Suppose the level of significance is chosen as 0.05. It means that the probability of
rejecting the null hypothesis when it is true is less than or equal to 0.05.

Step 3: Computation of Test Statistic
The test statistic is computed by carrying out an analysis of variance of the data. The
basic calculations for treatment totals and treatment means are shown in Table7.14.

The calculations for ANOVA are shown below

SSTotal =
m∑

i=1

n∑

j=1

(yij − y)2 =
3∑

i=1

4∑

j=1

(yij − y)2 = (46 − 57)2 + (35 − 57)2 + (47 − 57)2 + (42 − 57)2

+(54 − 57)2 + (57 − 57)2 + (79 − 57)2 + (86 − 57)2 + (56 − 57)2 + (56 − 57)2 + (61 − 57)2 + (65 − 57)2

= 2346

SSTreatments = n
m∑

i=1

(yi. − y)2 = 4[(42.5 − 57)2 + (69 − 57)2 + (59.5 − 57)2] = 1442

SSBlocks = m
n∑

j=1

(y.j − y)2 = 3[(52 − 57)2 + (49.3 − 57)2 + (62.3 − 57)2 + (64.3 − 57)2] = 498

SSError = SSTotal − SSTreatments − SSBlocks = 406

The calculations are summarized in Table7.15.

Step 4: Specification of Critical Region
The null hypothesis is rejected if F0 > Fα,a−1,(a−1)(b−1) = F0.05,2,6 = 5.14 (Table
A.11). The critical region is shown in Fig. 7.8.
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Table 7.15 ANOVA Table for moisture content data

Source of
variation

Sum of squares Degree of
freedom

Mean squares F0

Treatments 1442 2 721 10.66

Blocks 498 3 166

Errors 406 6 67.66

Total 2346 11

Fig. 7.8 Display of critical
region for moisture content
data

Step 5: Take a Decision
As the value of the test statistic falls in the critical region adopted, this calls for
rejection of null hypothesis. It is therefore concluded that there is a difference between
population treatment means, at least for a pair of populations. The moisture content
of the fabrics obtained from different processes is significantly different at 0.05 level
of significance.

7.3.5 Multiple Comparison Among Treatment Means

Tukey’s test compares pairs of treatment means. This test declares two means to be
significantly different if the absolute value of their difference exceeds

Tα = qα(m, f )

√
MSError

n
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where qα(m, f ) is called studentized range statistic corresponding to level of signifi-
cance of α,m is the number of factor level, and f is the degrees of freedom associated
with theMSError, and n is the number of treatment levels. The numerical value of the
studentized range statistic can be obtained from a standard table. Here, using Table
A.17, q0.05(2, 6) = 3.46, we have

T0.05 = qα(m, f )

√
MSError

n
= q0.05(2, 6)

√
67.66

4
= 14.23.

The three treatment averages are y1. = 42.5, y2. = 69, y3. = 59.5. The absolute
differences in treatment averages are

|y1. − y2.| = 26.5∗ |y1. − y3.| = 17∗ |y2. − y3.| = 9.5

The starred values indicate the pair of means which is significantly different. Some-
times it is useful to draw a graph, as shown below, underlining pairs of means that
do not differ significantly.

y1. = 42.5, y3. = 59.5, y2. = 69.

As shown, the hydro process results in lowest moisture content in the fabric and this
is significantly different than those given by suction and mangle processes.

Another popular test for comparing the pairs of treatment means is Fisher’s test.
This test was also described in the earlier chapter. The least significant difference
(LSD) is calculated as follows (using Table A.10, t0.025,6 = 2.4469),

LSD = t 0.05
2 ,6

√
MSError

n
= 10.06

The three treatment averages are y1. = 42.5, y2. = 69, y3. = 59.5. The differences
in averages are

|y1. − y2.| = 26.5∗ |y1. − y3.| = 17∗ |y2. − y3.| = 9.5

The starred values indicate the pairs of means that are significantly different. Some-
times it is useful to draw a graph, as shown below, underlining pairs of means that
do not differ significantly.

y1. = 42.5, y3. = 59.5, y2. = 69.

It is seen that in this case, the results of Fisher’s test are the same as those of Tukey’s
test.

Example 7.5 Four different algorithms (A, B, C, and D) are used to solve three
problems of research in accordance with a randomized block design such that each
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problem is considered as one block. The results of this experiment are given in terms
of efficiency of algorithms (min) in Table7.16. It is required to know whether the
algorithms are same in terms of their efficiency or not at a level of significance of
0.05. Let us carry out the test of hypothesis, described in Sect. 7.2.4.

Step 1: Statement of Hypothesis: Here, the null hypothesis states that there is no
difference among the populationmean efficiencies of the algorithms (treatment). The
alternative hypothesis states that there is a difference between the population mean
efficiencies of the algorithms for at least a pair of populations.

Step 2: Selection of Level of Significance: Suppose the level of significance is
chosen as 0.05.

Step 3:Computation ofTest Statistic: The test statistic can be computed by carrying
out an analysis of variance of the data. The calculations for ANOVA are summarized
in Table7.17.

Step 4: Specification of Critical Region: The null hypothesis is rejected if
F0 > F0.05,3,6 = 4.76 (Table A.11).

Step 5: Take a Decision: As the value of the test statistic falls in the critical region
adopted, this calls for rejection of null hypothesis. It is therefore concluded that there
is a significant difference between the population mean efficiencies of the algorithms
for at least a pair of populations at 0.05 level of significance.

Example 7.6 Let us see what would have happened if the experimenter in
Example 7.5 was not aware of randomized block design. Suppose he would have
assigned the algorithms to each problem randomly and the same results (Table7.16)

Table 7.16 Data for algorithm efficiency

Algorithm
A

Problem (Blocks)

20 23 35

B 5 12.8 20

C 2 3.2 4

D 5 20.5 40

Table 7.17 ANOVA table for algorithm efficiency

Source of
variation

Sum of squares Degree of
freedom

Mean square F0

Treatments
(Algorithm)

938.4 3 312.8 6.50

Blocks (Problem) 567.1 2 283.56

Errors 288.6 6 48.10

Total 1794.1 11
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Table 7.18 Incorrect analysis of algorithm efficiency based on a completely randomized design

Source of
variation

Sum of squares Degree of
freedom

Mean square F0

Algorithm 938.4 3 312.8 6.50

Error 855.7 8 107

Total 1794.1 11

would have been obtained by chance. The incorrect analysis of the data based on a
completely randomized experiment is shown in Table7.18. Because F0 > F0.05,3,8 =
4.07 (Table A.11), the test statistic does not fall in the critical region adopted, hence
this does not call for rejection of null hypothesis. It is therefore concluded that there is
no significant difference between the population mean efficiencies of the algorithms
at 0.05 level of significance. It can be thus observed that the randomized block
design reduces the amount of experimental error such that the differences among the
four algorithms are detected. This is a very important feature of randomized block
design. If the experimenter fails to block a factor, then the experimental error can
be inflated so much that the important differences among the treatment means may
remain undetected.

7.4 Latin Square Design

Latin square design is used to eliminate twonuisance sources of variability by system-
atically blocking in two directions. The rows and columns represent two restrictions
on randomization. In general, a p × p Latin square is a square containing p rows and
p columns. In this Latin square, each of the resulting p2 cells contains one of the p
letters that corresponds to the treatment, and each letter appears only once in each
row and column. Some Latin square designs are shown in Fig. 7.9. Here, the Latin
letters A, B, C, D, and E denote the treatments.

Fig. 7.9 Display of Latin
square designs
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7.4.1 A Practical Problem

Suppose a material supplied by three different vendors is required to be analyzed for
its weight in grams. It is known frompast experience that theweighingmachines used
and the operators employed for measurements have influence on the weights. The
experimenter therefore decides to run an experiment such that it takes into account of
the variability caused by themachine and the operator. A 3 × 3 Latin square design is
chosen where each material supplied by three different vendors is weighed by using
three different weighing machines and three different operators.

7.4.2 Data Visualization

As stated earlier, the material is analyzed for weight in grams from three different
vendors (a, b, c) by three different operators (I, II, III) and using three different
weighing machines (1, 2, 3) in accordance with a 3 × 3 Latin square design. The
results of experiment are shown in Table7.19. Here, A, B, and C denote the weights
obtained by three different vendors.

7.4.3 Descriptive Model

Let us describe the observations using the following linear statistical model

yijk = μ + αi + τj + βk + εijk ; i = 1, 2, . . . , p; j = 1, 2, . . . , p; k = 1, 2, . . . , p

Here, yijk is a random variable denoting the ijkth observation. μ is a parameter
common to all levels called the overall mean, αi is a parameter associated with the
ith row called the ith row effect, and τj is a parameter associatedwith the jth treatment
called the jth treatment effect, βk is a parameter associated with kth column called
kth column effect, and εijk is a random error component. The above expression can
also be written as yijk = μijk + εijk where μijk = μ + αi + τj + βk .

Note that this is a fixed effect model. The followings are the reasonable estimates
of the model parameters

Table 7.19 Experimental
results of material weight

Operators Weighing machines

1 2 3

I A = 16 B = 10 C = 11

II B = 15 C = 9 A = 14

III C = 13 A = 11 B = 13
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Table 7.20 Data and residuals for material weight

Operators Weighing machines

1 2 3

I A = 16 A =
15.79

0.21 B = 10 B =
10.12

−0.12 C = 11 C =
11.12

−0.12

II B = 15 B =
15.13

−0.13 C = 9 C =
8.79

0.21 A = 14 A =
14.13

−0.13

III C = 13 C =
13.12

−0.12 A = 11 A =
11.12

−0.12 B = 13 B =
12.79

0.21

μ̂ = y.. where y... =
p∑

i=1

p∑

j=1

b∑

k=1

yijk and y... = y...

p3

α̂i = yi.. − y... where yi.. =
p∑

j=1

p∑

k=1

yijk , i = 1, 2, . . . , p and yi.. = yi..
p

τ̂j = y.j. − y... where y.j. =
p∑

i=1

p∑

k=1

yijk , j = 1, 2, . . . , p and y.j. = y.j.

p

β̂k = y..k − y... where y..k =
p∑

i=1

p∑

j=1

yijk , k = 1, 2, . . . , pand y..k = y..k

p

μ̂ijk = μ̂ + α̂i + τ̂j + β̂k = yi.. + y.j. + y..k − 2y...

The estimate of the observations is ŷijk = yi.. + y.j. + y..k − 2y... Hence, the residual
is eijk = yijk − ŷijk .

These formulae are used to estimate the observations and the residuals. Table7.20
compares the estimated observations with the actual ones and reports the residuals.
Here, in each cell, three values are reported for a given operator and for a given
weighing machine. The leftmost value is obtained from experiment, the middle one
is the fitted value, and the rightmost value represents residual.

As in any design problem, it is necessary to check whether the model is adequate
or not. Themethods of doing this are described in Sect. 8.2.3. The reader is instructed
to carry out a similar analysis and conclude on the adequacy of the model.

7.4.4 Test of Hypothesis

The test of hypothesis is carried out as stated below.

Step 1: Statement of Hypothesis
We are interested here in testing the equality of vendor means. Then, the null hypoth-
esis states that the population vendor means are equal.
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H0 : μ.1. = μ.2. = · · · = μ.p..

The alternative hypothesis states that there is a difference between the population
treatment means for at least a pair of populations.

H1 : μ.i. �= μ.j. for at least one i and j.

Step 2: Selection of Level of Significance
Suppose the level of significance is chosen as 0.05. It means that the probability of
rejecting the null hypothesis when it is true is less than or equal to 0.05.

Step 3: Computation of Test Statistic
The test statistic is computed by carrying out an analysis of variance of the data. The
calculations for the sum of squares are shown here.

SSTotal =
3∑

i=1

3∑

j=1

3∑

k=1

y2ij − y2...
3 × 3

= (162 + 102 + 112 + 152 + 92 + 142 + 132 + 112 + 132) −
( 1122

9

)

= 1438 − 1393.78 = 44.22

SSVendors = 1

3

3∑

j=1

y2.j. − y2...
3 × 3

= 1

3
[(16 + 14 + 11)2 + (10 + 15 + 13)2 + (11 + 9 + 13)2] − 1122

9

= 1404.67 − 1393.78 = 10.89

SSOperators = 1

3

3∑

i=1

y2i.. − y2...
3 × 3

= 1

3
[372 + 382 + 372] − 1122

9
= 1394 − 1393.78 = .22

SSWeighing machines = 1

3

3∑

k=1

y2..k − y2...
3 × 3

= 1

3
[442 + 302 + 382] − 1122

9
= 1426.67 − 1393.78 = 32.89

SSError = SSTotal − SSVendors − SSInspectors − SSScales = 44.22 − 10.89 − .22 − 32.89 = .22

The calculations are summarized in Table7.21.

Step 5: Specification of Critical Region
The null hypothesis is rejected if F0 > Fα,p−1,(p−1)(p−2) = F0.05,2,2 = 19.00
(Table A.11). The critical region is shown in Fig. 7.10.

Step 6: Decision
As the value of the test statistic falls in the critical region adopted, this calls for
rejection of null hypothesis. It is therefore concluded that there is a difference between

Table 7.21 ANOVA table for
material weight data

Source of
variation

Sum of
squares

Degree of
freedom

Mean
square

F Value

Vendors 10.89 2 5.445 49.5

Operators 0.22 2 0.11

Weighing
machines

32.89 2 16.445

Errors .22 2 .11

Total 44.22 8
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Fig. 7.10 Critical region

the weight of the materials supplied by the vendors, at least for a pair of weights of
the materials supplied by the vendors.

7.4.5 Multiple Comparison Among Treatment Means

Tukey’s test compares between the pairs of mean values. This test is described in the
earlier section. The numerical value of the studentized range statistic is obtained as
follows.

Here, the studentized range statistic is mentioned below. Using Table A.17,
q0.05(2, 2) = 6.09, we have

Tα = qα(a, f )

√
MSError

n
= q0.05(2, 2)

√
0.11

3
= 1.166.

The three averages are y.1. = 13.67, y.2. = 12.67, y.3. = 11. The absolute differ-
ences in averages are

|y.1. − y.2.| = 1.00∗ |y.1. − y.3.| = 2.67∗ |y.2. − y.3.| = 1.67∗.

The starred values indicate the pairs of means that are significantly different. Some-
times, it is useful to draw a graph, as shown below, underlining pairs of means that
do not differ significantly.

y.3. = 11, y.2. = 12.67, y.1. = 13.67.



7.4 Latin Square Design 253

It can be observed that the material supplied by vendor A is on an average the
heaviest, followed by those supplied by vendors B and C, respectively. Further, the
differences between the materials supplied by vendors A and C and B and C are
statistically significant.

There is another test, Fisher’s test, that compares whether the difference between
the averages is statistically significant or not. In this test, the least significance dif-
ference (LSD) is obtained as follows (Using Table A.10, t0.05,2 = 4.3027).

LSD = t 0.05
2 ,2

√
2MSError

n
= t 0.05

2 ,2

√
2 × .11

3
= 1.165.

The three averages are y.1. = 13.67, y.2. = 12.67, y.3. = 11. Then, the differences
in averages are

|y.1. − y.2.| = 1.00 |y.1. − y.3.| = 2.67∗ |y.2. − y.3.| = 1.67∗.

The starred values indicate the pairs of means that are significantly different.

Example 7.7 An agricultural scientist wishes to examine the effect of five varieties
of barley (A, B, C,D, and E) on their yield (kg per plot). An experiment is conducted
according to a Latin Square Design so that the effects of plot and season are sys-
tematically controlled. Yield of barley (kg per plot) is shown in Table7.22. Suppose
we wish to know if the five varieties of barley exhibit same yield or not at a level of
significance of 0.05. Let us carry out the test of hypothesis, described in Sect. 8.3.4.

Step 1: Statement of Hypothesis: Here, the null hypothesis states that there is no
difference among the population mean yields of barley produced from five differ-
ent varieties (treatment). The alternative hypothesis states that there is a difference
between the population mean yields of barley for at least a pair of populations.

Step 2: Selection of Level of Significance: Suppose the level of significance is
chosen as 0.05.

Step 3:Computation ofTest Statistic: The test statistic can be computed by carrying
out an analysis of variance of the data. The calculations for ANOVA are summarized
in Table7.23.

Step 4: Specification of Critical Region: The null hypothesis is rejected if F0 >

F0.05,3,6 = 4.76 (Table A.11).

Table 7.22 Experimental
data barley yield as per Latin
Square design

Plot Season

I II III IV

1 B = 40 C = 26 D = 26 A = 52

2 D = 15 A = 50 B = 38 C = 38

3 C = 30 B = 45 A = 48 D = 24

4 A = 55 D = 20 C = 35 B = 42
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Table 7.23 ANOVA for
barley yield

Source of
variation

Sum of
squares

Degree of
freedom

Mean
square

F0

Variety of
barley

1963 3 654.33 25.83

Plot 16.40 3 5.5

Season 40.50 3 13.5

Errors 152.00 6 25.33

Total 2172.00 15

Step 5: Take a Decision: As the value of the test statistic falls in the critical region
adopted, this calls for rejection of null hypothesis. It is therefore concluded that there
is a significant difference between the population mean yields of barley for at least
a pair of populations at 0.05 level of significance.

Example 7.8 Consider Example 7.7. Let us find out which of the mean barley yields
are significantly different by applying Tukey’s test, as described in Sect. 8.4.5. Here,
the mean barley yields are as follows.

y.1. = 51.25, y.2. = 41.25, y.3. = 32.25, y.4. = 4.08.

The numerical value of the studentized range statistic is T0.05 = q0.05(4, 15) = 4.08
(Table A.17). The differences in mean barley yields are

|y.1. − y.2.| = 10∗, |y.1. − y.3.| = 19∗, |y.1. − y.4.| = 30∗

|y.2. − y.3.| = 9∗, |y.2. − y.4.| = 19∗

|y.3. − y.4.| = 11∗.

The starred values indicate the pairs of means that are significantly different. Clearly,
all the pairs of means are significantly different in terms of yielding barley at 0.05
level of significance.

7.5 Balanced Incomplete Block Design

Sometimes, in a randomized block design, it is not possible to carry out runs with
all treatment combinations in each block. This type of situation occurs because of
shortage of apparatus or unavailability of sufficient materials or lack of time or
limited facilities. In such situation, it is possible to use a block design in which every
treatment may not be present in every block. Then, the block is said to be incomplete,
and a design constituted of such blocks is called incomplete block design. However,
when all treatment combinations are equally important as it ensures equal precision
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of the estimates of all pairs of treatment effects, the treatment combinations used in
each block should be selected in a balanced manner such that any pair of treatments
appear together an equal number of times. An incomplete block design constituted
in such a balanced manner is called balanced incomplete block design (BIBD). In a
nutshell, it is an incomplete block design inwhich any two treatments appear together
an equal number of times.

7.5.1 A Practical Problem

A process development engineer was interested to identify an appropriate method
of pigment dispersion in a coloring paint. In a pilot plant, he thought to prepare a
particularmix of a pigment, apply it to a panel by five applicationmethods (screening,
brushing, spraying, rolling, and jetting), and measure the percentage reflectance of
pigment. As in the pilot plant, it was possible to produce only four runs in a day, the
engineer chose a balanced incomplete block design for experimentation.

7.5.2 Experimental Data

The engineer decided to choose five days and follow five application methods. He
carried out runs in such a manner that any two processes appear together for four
number of times. The experimental results are displayed in Table7.24.

7.5.3 Descriptive Model

Supposewehavem number of treatments and n number of blocks such that each block
contains k number of treatments and each treatment occurs r times. So, in this design,
the total number of observations is N = mr = nk. In a balanced incomplete block
design, if m = n then the design becomes symmetric. In this particular numerical

Table 7.24 Experimental
results of percentage
reflectance of pigment

Process Day

1 2 3 4 5

Screening 66 64 64 68

Brushing 76 74 76 76

Spraying 82 86 84 82

Rolling 62 64 66 66

Jetting 54 56 56 58
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problem, m = 5, n = 5, k = 4, and r = 4. As, here, m = n = 4, hence the design is
said to be symmetric.

The statistical model for the balanced incomplete block design (BIBD) is

yij = μ + τi + βj + εij

where yij is a random variable indicating the ith observation in the jth block, μ is
a parameter common to all treatments called the overall mean, τi is a parameter
associated with the ith treatment called ith treatment effect, βj is another parameter
related to the jth block called jth block effect, and εij is random error.

7.5.4 Test of Hypothesis

As stated in Chap. 7, the test of hypothesis is carried out in the following manner.

Step 1: Statement of Hypothesis
We are interested in testing the equality of population treatment means of percentage
reflectance of pigment. Our null hypothesis states that there is no difference among
the population treatment means. Hence, we write

H0 : μ1 = μ2 = · · · = μm or equivalently H0 : τ1 = τ2 = · · · = τm

The alternative hypothesis stats that there is a difference between population treat-
ment means for at least a pair of populations. So, we write

H1 : μi �= μj for at least one i and j, or, equivalently, H1 : τi �= 0 for at least one i.

Step 2: Selection of Level of Significance
Suppose the level of significance is chosen as 0.05. It means that the probability of
rejecting the null hypothesis when it is true is less than or equal to 0.05.

Step 3: Computation of Test Statistic
The test statistic is computed by carrying out an analysis of variance of the data. The
basic calculations for treatment totals and treatment means are shown in Table7.25.

The calculations for ANOVA are shown below. The total variability can be cal-
culated as

SSTotal =
m∑

i=1

n∑

j=1

y2ij − y2..
N

= (66)2 + (64)2 + · · · + (56)2 + (58)2 − (1380)2

4 × 5
= 1860.

This total variability may be partitioned into

SSTotal = SSTreatments(adjusted) + SSBlocks + SSError .
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Table 7.25 Calculations for treatments and blocks for pigment dispersion data

Process Day yi
1 2 3 4 5

Screening 66 64 64 68 262

Brushing 76 74 76 76 302

Spraying 82 86 84 82 334

Rolling 62 64 66 66 258

Jetting 54 56 56 58 224

y_ j 258 266 290 284 282 1380

where the sumof squares for treatments is adjusted to separate the treatment effect and
the block effect. This adjustment is required because each treatment is represented in
a different set of r blocks. Thus, the differences between unadjusted treatment totals
y1., y2., . . . , ym. are also affected by the differences between blocks.

The adjusted treatment sum of squares is expressed as follows

SSTreatments(adjusted) =
k

m∑

i=1

Q2
i

mr(k−1)
(a−1)

whereQi is the adjusted total for the ith treatment. This can be calculated in a manner
shown below

Qi = yi. − 1

k

n∑

j=1

αijy.j, i = 1, 2, . . . ,m

withαij = 1 if treatment i appears in block j andαij = 0 otherwise. The summation of
adjusted treatment totals will be equal to zero. Needless to say that SSTreatments(adjusted)

has a − 1 degrees of freedom.
In order to compute the adjusted treatment sum of squares, we need to calculate

the adjusted total for each treatment. This is done as shown below.

Q1 = y1. − 1

4

n∑

j=1

α1jy.j = 262 − 1

4
(258 + 266 + 290 + 284) = −12.5

Q2 = y2. − 1

4

n∑

j=1

α2jy.j = 302 − 1

4
(258 + 290 + 284 + 282) = 23.5

Q3 = y3. − 1

4

n∑

j=1

α3jy.j = 334 − 1

4
(266 + 290 + 284 + 282) = 53.5
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Q4 = y4. − 1

4

n∑

j=1

α4jy.j = 258 − 1

4
(258 + 266 + 290 + 282) = −16

Q5 = y5. − 1

4

n∑

j=1

α5jy.j = 224 − 1

4
(258 + 266 + 284 + 282) = −48.5

Then, the adjusted treatment sum of squares can be computed as stated hereunder

SSTreatments(adjusted) =
k

m∑

i=1

Q2
i

mr(k−1)
(a−1)

= 4[(12.5)2 + (23.5)2 + (53.5)2 + (16)2 + (48.5)2]
5×4×(4−1)

(5−1)

= 1647.73

The block sum of squares is

SSBlocks = 1

k

m∑

i=1

y2.j − y2..
N

= 1

4
[(258)2 + (266)2 + (290)2 + (284)2 + (282)2] − (1380)2

4 × 5
= 180

The error sum of squares is

SSError = SSTotal − SSTreatments(adjusted) − SBlocks = 1860 − 1647.73 − 180 = 32.27

The calculations are summarized in Table7.26.

Step 4: Specification of Critical Region
The null hypothesis is rejected if F0 > Fα,a−1,N−(a−1)(b−1) = F0.05,4,11 = 3.36
(Table A.11).

Step 5: Take a Decision
As the numerical value (140.59) of the test statistic is greater than 3.36, the former
falls in the critical region adopted, thus calling for rejection of null hypothesis. It is
therefore concluded that the pigment application methods are significantly different
at a level of significance of 0.05.

Table 7.26 ANOVA Table
for pigment dispersion data

Sources of
variation

Sum of
squares

Degrees
of
freedom

Mean
square

F0

Treatments
(adjusted for
blocks)

1647.73 4 411.93 140.59

hline Blocks 180 4 −
Error 32.27 11 2.93

Total 19
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Problems

7.1 A completely randomized experiment was carried out to examine the effect of
an inductor current sense resistor on the power factor of a PFC circuit. Four resistor
values were chosen and three replicates of each treatment were carried out. The
results are displayed in Table7.27.

(a) Draw a scatter plot and a box plot of power factor of the PFC circuit.
(b) Fit a descriptive model to the above-mentioned data and comment on the ade-

quacy of the model.
(c) Test the hypothesis that the four sensor resistor values result in same power

factor. Use α = 0.05.
(d) Use Tukey’s test to compare the means of power factors obtained at different

sensor resistor values.
(e) Use Fisher’s test to compare the means of power factors obtained at different

sensor resistor values. Is the conclusion same as in 8.1(d)?
(f) Fit a suitable regression model to the data.

7.2 The austenite stainless steels are used for making various engineering compo-
nents in power plants and automobile industries. In order to examine the effect of
cyclic loading on fatigue properties of austenite stainless steel, a completely ran-
domized experiment was conducted. Four levels of number of cycles to failure were
chosen and the corresponding maximum stress was observed. This was replicated
three times. The results of experiment are shown in Table7.28.

Table 7.27 Data for
Problem7.1

Sensor
resistor value
(Ohm)

Power factor (-)

I II III

0.05 0.88 0.87 0.89

0.10 0.92 0.94 0.93

0.20 0.95 0.94 0.95

0.25 0.98 0.99 0.98

Table 7.28 Data for
Problem7.2

Number of
cycles to
failures

Maximum stress (MPa)

I II III

100 500 530 480

1000 350 320 380

10000 280 240 300

100000 200 220 230

1000000 150 180 160
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(a) Does the number of cycles to failure affect the maximum stress of the austenite
stainless steel? Use α = 0.05.

(b) Use Tukey’s test to compare the means of maximum stress obtained at the dif-
ferent numbers of cycles to failure.

(c) Fit a suitable regression model to the data.

7.3 In order to examine the effect of temperature on the output voltage of a ther-
mocouple, a completely randomized experiment was carried out. Four different tem-
peratures (250, 500, 750, and 1000◦C) were chosen and the output voltages were
measured. This was replicated three times. The results are shown in Table7.29.

(a) Does the temperature affect the output voltage of the thermocouple? Use α =
0.05.

(b) Use Tukey’s test to compare the means of output voltages obtained at different
temperatures.

(c) Fit a suitable regression model to the data.

7.4 Four catalysts that may affect the yield of a chemical process are investigated.
A completely randomized design is followed where each process using a specific
catalyst was replicated four times. The yields obtained are shown in Table7.30.

Do the four catalyst have same effect on yield? Use α = 0.05.

7.5 A completely randomized experiment was carried out to examine the effect of
diet on coagulation time for blood of animals. For this, 24 animals were randomly
allocated to four different diets A, B, C, and D and the blood samples of the animals
were tested. The blood coagulation times of the animals are shown in Table7.31.

Table 7.29 Data for
Problem7.3

Temperature
(◦C)

Output voltage (mV)

I II III

250 9.8 10.2 10.1

500 19.3 20.4 19.8

750 29.5 30.6 29.9

1000 39.6 40.6 39.8

Table 7.30 Data for
Problem7.4

Catalyst Yield (%)

I II III IV

A 58.2 57.4 56.8 57.6

B 63.8 64.2 66.4 65.9

C 80.6 80.4 82.8 84.2

D 96.4 95.8 97.4 98.6
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Table 7.31 Data for
Problem7.5

A B C D

60 65 69 58

63 67 66 63

62 70 73 61

61 68 68 63

63 66 66 62

62 65 67 65

Table 7.32 Data for
Problem7.6

Cooking
method

Concentration of glucosinolates (μ g/g)

I II III

Boiling 1080 1060 1100

Micro oven 1240 1260 1250

Basket
steaming

1540 1550 1530

Oven
steaming

2060 2040 2020

(a) Draw a scatter plot and a Box plot of blood coagulation time.
(b) Fit a descriptive model to the above-mentioned data and comment on the ade-

quacy of the model.
(c) Test the hypothesis that the four diets result in same blood coagulation time. Use

α = 0.05.
(d) Use Tukey’s test to compare the mean coagulation times.
(e) Use Fisher’s test to compare the mean coagulation times. Is the conclusion same

as in 8.5(d)?

7.6 In order to study the effect of domestic cooking on phytochemicals of fresh
cauliflower, a completely randomized experiment was conducted. Cauliflower was
processed by four different cooking methods, and the resulting glucosinolates were
measured. Each treatment was replicated three times. The experimental data are
shown in Table7.32. Does the cooking method affect the concentration of glucosi-
nolates in cooked cauliflower? Use α = 0.05.

7.7 Three brands of batteries were investigated for their life in clocks by performing
a completely randomized design of experiment. Four batteries of each brand were
tested, and the results on the life (weeks) of batteries were obtained and are shown
in Table7.33.

Are the lives of the four brands of batteries different? Use α = 0.05?

7.8 A quality control manager wishes to test the effect of four test methods on
the percentage rejection of produced items. He performed a completely randomized
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Table 7.33 Data for
Problem7.7

Brand 1 Brand 2 Brand 3 Brand 4

21 18 28 36

24 22 30 34

22 20 32 32

25 16 30 34

Table 7.34 Data for
Problem7.8

Method 1 Method 2 Method 3 Method 4

5 12 15 16

9 10 17 12

7 16 12 14

8 18 14 18

Table 7.35 Data for
Problem7.9

Brand 1 Brand 2 Brand 3 Brand 4 Brand 5

70 80 91 94 98

74 82 90 96 99

76 86 92 92 97

72 84 93 94 96

design with four replicates under each test methods and obtained the following data
shown in Table7.34.

Are the percentage rejection resulting from four different test methods different?
Use α = 0.05.

7.9 A completely randomized design of experiment was carried out to compare five
brands of air-conditioning filters in terms of their filtration efficiency. Four filters of
each brand were tested, and the results were obtained on the filtration efficiency (%)

of the filters and are shown in Table7.35.
Are the filtration efficiencies of the five brands of filters different? Use α = 0.05.

7.10 An experiment was conducted to examine the effect of lecture timing on the
marks (out of 100) obtained by students in a common first-year undergraduate course
of Mathematics. A randomized block design was chosen with three blocks in such
a way that the students majoring in Computer Science, Electrical Engineering, and
Mechanical Engineering constituted Block 1, Block 2, and Block 3, respectively.
The marks obtained by the students out of 100 are shown in Table7.36.

Analyze the data and draw appropriate conclusion. Use α = 0.05.

7.11 Consider, in the above problem, the experimenter was not aware of randomized
blockdesign andwould have assigned the lecture timing eachof the studentsmajoring
in different branches randomly. Further, consider that the experimenter would have
obtained the same results as in the above problem by chance.Would the experimenter
have concluded the same as in the above problem? Use α = 0.05.
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Table 7.36 Data for
Problem7.10

Lecture timing Blocks

1 2 3

8:00 am – 8:50 am 96 90 85

11:00 am – 11:50 am 85 88 82

2:00 pm – 2:50 pm 80 76 78

Table 7.37 Data for
Problem7.12

Test
method

Materials (Blocks)

I II III IV

A 10.2 19.7 23.4 19.6

B 12.5 15.4 28.7 23.4

C 13.7 18.7 24.5 26.7

Table 7.38 Data for
Problem7.13

Region Season

I II III

1 C = 265 B = 410 A = 220

2 A = 280 C = 300 B = 384

3 B = 360 A = 240 C = 251

7.12 Three different testmethods (A,B, andC) are compared to examine the strength
of four different materials (I, II, III, and IV) in accordance with a randomized block
design of experiment such that each material acts like a block. The results of exper-
iments (strength in N) are given in Table7.37.

Analyze the data and draw appropriate conclusion. Use α = 0.05.

7.13 A sales manager was interested to compare the sales of three products (A,
B, and C). A Latin Square Design of experiment was conducted to systematically
control the effects of region and season on the sales of the products. The data on
sales revenue (in thousand dollars) are given in Table7.38.

Analyze the data and draw appropriate conclusion. Use α = 0.05.

7.14 An oil company wishes to test the effect of four different blends of gasoline
(A, B, C, and D) on the fuel efficiency of cars. It is thought to run the experiment
according to a Latin Square Design so that the effects of drivers and car models may
be systematically controlled. The fuel efficiency, measured in km/h after driving the
cars over a standard course, is shown in Table7.39.

Analyze the data and draw appropriate conclusion. Use α = 0.05.

7.15 A chemical engineer wishes to test the effect of five catalysts (A, B, C, D,
and E) on the reaction time of a chemical process. An experiment is conducted
according to a Latin Square Design so that the effects of batches and experimenters
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Table 7.39 Data for
Problem7.14

Driver Car model

I II III IV

1 B = 20.2 C = 28.3 D = 18.6 A = 16.2

2 D = 14.7 A = 14.3 B = 23.5 C = 27.9

3 C = 25.8 B = 22.7 A = 15.8 D = 16.5

4 A = 12.6 D = 17.8 C = 29.5 B = 23.5

Table 7.40 Data for
Problem7.15

Experi- Reaction time
menter

I II III IV V

1 A = 8.5 B = 15.8 D = 17.5 C = 9.6 E = 12.0

2 C = 10.2 A = 7.6 B = 15.6 E = 12.6 D = 18.2

3 E = 12.4 D = 17.9 A = 8.0 B = 16.0 C = 10.0

4 B = 16.4 E = 11.8 C = 10.6 D = 18.4 A = 8.2

5 D = 18.6 C = 9.8 E = 11.6 A = 7.9 B = 16.2

Table 7.41 Data for
Problem7.16

Oil weight
(g)

Car

1 2 3 4 5

5 90.45 91.23 90.75 89.47

10 92.41 93.5 92.04 93.4

15 94.56 94.99 95.14 95.07

20 96.89 97.03 97.01 96.87

25 99.74 99.7 99.4 99.58

may be systematically controlled. The experimental data, expressed in h, is shown
in Table7.40.

Analyze the data and draw appropriate conclusion. Use α = 0.05.

7.16 A process engineer is interested to study the effect of oil weight onto the
filtration efficiency of engine intake air filters of automotives. In the road test he
wishes to use cars as blocks, however, because of time constraint, he used a balanced
incomplete block design. The results of experiment are shown in Table7.41. Analyze
the data using α = 0.05.

Reference

LeafGAV (1987) Practical statistics for the textile industry.Manchester, Part II, TheTextile Institute,
p 70



Chapter 8
Multifactor Experimental Designs

8.1 Introduction

In order to study the effects of two or more factors on a response variable, factorial
designs are usually used. By following these designs, all possible combinations of
the levels of the factors are investigated. The factorial designs are ideal designs for
studying the interaction effect between factors. By interaction effect, we mean that
a factor behaves differently in the presence of other factors such that its trend of
influence changes when the levels of other factors change. This has already been
discussed in Chap. 1. In this chapter, we will learn more about factorial design and
analysis of experimental data obtained by following such designs.

8.2 Two-Factor Factorial Design

The simplest type of factorial design involves only two factors, where each factor
has same level or different levels. Experiments are conducted in such a manner that
all possible combinations of levels of factors are taken into account and there are
replicates at each combination. As known, the replicates allow the experimenter to
obtain an estimate of experimental error.

8.2.1 A Practical Problem

It is known that the strength of joints in a parachutewebbing is vital to its performance.
A fabric engineer wishes to examine whether the length of overlap of two pieces of
webbing being joined and the stitch density (no. of stitches per cm) play any role in
determining the strength of the ultimate webbing. He then selects two levels (high
and low) of length of overlap and three levels (low, medium, and high) of stitch

© Springer Nature Singapore Pte Ltd. 2018
D. Selvamuthu and D. Das, Introduction to Statistical Methods,
Design of Experiments and Statistical Quality Control,
https://doi.org/10.1007/978-981-13-1736-1_8

265

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1736-1_8&domain=pdf
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Table 8.1 Experimental data of joint strength in parachute webbing

Length of overlap Stitch density

Low Medium High

Short 32 41 68

28 38 71

Long 37 61 77

42 64 79

density and conducts a factorial experiment with two replicates. The experimental
results are displayed in Table8.1 (Leaf 1987).

8.2.2 Descriptive Model

In general, a two-factor factorial experiment is displayed as shown in Table8.2. Here
Yijk denotes the observed response when factor A is at ith level (i = 1, 2, . . . , a) and
factor B is at jth level (j = 1, 2, . . . , b) for kth replicate (k = 1, 2, . . . , n).

The observations of the experiment can be described by the following linear
statistical model

yijk = μ + τi + βj + (τβ)ij + εijk ; i = 1, 2, . . . , a; j = 1, 2, . . . , b; k = 1, 2, . . . , n

where yijk is a random variable denoting the ijkth observation, μ is a parameter
common to all levels called the overall mean, τi is a parameter associated with the
ith level effect of factor A, βj is a parameter associated with jth level effect of factor
B, and εijk is a random error component. This corresponds to fixed effect model. It
can be also written as

yijk = μij + εijk; i = 1, 2, . . . , a; j = 1, 2, . . . , b; k = 1, 2, . . . , n

Table 8.2 Scheme of a two-factor factorial experiment data

Observations

1 2 . . . b

Factor A 1 y111, y112, . . . , y11n y111, y112, . . . , y11n
.
.
. y1b1, y1b2, . . . , y1bn

2 y211, y212, . . . , y21n y221, y222, . . . , y22n
.
.
. y2b1, y2b2, . . . , y2bn

. . .
.
.
.

.

.

. . . .
.
.
.

a ya11, ya12, . . . , ya1n ya21, ya22, . . . , ya2n
.
.
. yab1, yab2, . . . , yabn
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where μij = μ + τi + βj + (τβ)ij.
The followings are the reasonable estimates of the model parameters

μ̂ = y... = 1

abn

a∑

i=1

b∑

j=1

n∑

k=1

yijk

τ̂i = yi.. − y..., i = 1, 2, . . . , a where yi.. = 1

bn

b∑

j=1

n∑

k=1

yijk

β̂j = y.j. − y..., j = 1, 2, . . . , b where yi.. = 1

an

a∑

i=1

n∑

k=1

yijk

ˆτβ ij = yij. − y... − (yi.. − y...) − (y.j. − y...) = yij. − yi.. − y.j. + 2y...

where yij. = 1
n

n∑

k=1

yijk .

The estimate of the observations is ŷijk = μ̂ + τ̂i + β̂j + (τβ)ij. Hence, the resid-
ual is eij = yijk − ŷijk .

These formulas are used to estimate the observations and the residuals. The cal-
culations are shown here. We consider the length of overlap as factor A and stitch
density as factor B.

y... = 1

abn

a∑

i=1

b∑

j=1

n∑

k=1

yijk = 638

12
= 53.17, y1.. = 1

bn

b∑

j=1

n∑

k=1

y1jk = 278

6
= 46.33

y2.. = 1

bn

b∑

j=1

n∑

k=1

y2jk = 360

6
= 6, y.1. = b

an

a∑

i=1

n∑

k=1

yi1k = 139

4
= 34.75

y.2. = 1

an

a∑

i=1

n∑

k=1

yi2k = 204

4
= 51, y.3. = 1

bn

a∑

i=1

n∑

k=1

yi3k = 295

4
= 73.75

y11. = 1

n

n∑

k=1

y11k = 60

2
= 30, y12. = 1

n

n∑

k=1

y12k = 79

2
= 39.5

y13. = 1

n

n∑

k=1

y13k = 139

2
= 69.5, y21. = 1

n

n∑

k=1

y21k = 79

2
= 39.5

y22. = 1

n

n∑

k=1

y22k = 125

2
= 62.5, y23. = 1

n

n∑

k=1

y23k = 156

2
= 78

μ̂ = y... = 53.17, τ̂1 = y1.. − y... = − 6.84

τ̂2 = y2.. − y... = 6.83, β̂1 = y.1. − y... = − 18.42

β̂2 = y.2. − y... = − 2.17, β̂3 = y.3. − y... = 20.58
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Table 8.3 Data and residuals for joint strength in parachute webbing

Length of overlap (A) Stitch density (B)

Low Medium High

Short 32 30 2 41 39.5 1.5 68 69.5 −1.5

28 30 −2 38 39.5 −1.5 71 69.5 1.5

Long 37 39.5 −1.5 61 62.5 −1.5 77 78 −1

42 39.5 2.5 64 62.5 1.5 79 78 1

(τβ)11 = y11. − y1.. − y.1. + y... = 2.09, (τβ)12 = y12. − y1.. − y.2. + y... = − 4.66

(τβ)13 = y13. − y1.. − y.3. + y... = 2.59, (τβ)21 = y21. − y2.. − y.1. + y... = − 2.08

(τβ)22 = y22. − y2.. − y.2. + y... = 4.67, (τβ)23 = y23. − y2.. − y.3. + y... = − 2.58

Table8.3 reports the experimental results, fitted values, and residuals. Here, in each
cell, three values are reported for a given process and for a given fabric type. The
leftmost value is obtained from experiment, the middle one is the fitted value, and
the rightmost value represents residual. It is now necessary to check whether the
model is adequate or not. The methods of doing this are described in Sect. 7.2.3. The
reader is instructed to carry out a similar analysis and conclude on the adequacy of
the model.

8.2.3 Test of Hypothesis

The test of hypothesis is carried out as stated below. One can go through Chap.5 to
know more about testing of hypothesis.

Step 1: Statement of Hypothesis

We are interested in testing the equality of treatment means. Here, factor A and factor
B are equally important. Then, the null hypothesis about the equality of row treatment
effects is

H0 : τ1 = τ2 = · · · = τa = 0

and the alternative hypothesis is

H1 : τi �= 0 for at least one i

Similarly, for the equality of column treatment effect, the null hypothesis is

H0 : β1 = β2 = · · · = βb = 0
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and the alternative hypothesis is

H1 : βj �= 0 for at least one j

We are also interested in determining whether row and column treatments interact.
Thus, we also wish to test the null hypothesis

H0 : (τβ)ij = 0 ∀ i, j

against the alternative hypothesis

H1 : (τβ)ij �= 0 for at least one i, j

Step 2: Choice of Level of Significance

The level of significance, usually denoted by α, is stated in terms of some small
probability value such as 0.10 (one in ten) or 0.05 (one in twenty) or 0.01 (one in a
hundred) or 0.001 (one in a thousand) which is equal to the probability that the test
statistic falls in the critical region, thus indicating falsity of H0.

Step 3: Find Out the Value of Test Statistics

The test statistics are stated below.

F0,i = MSi
MSError

, i ∈ {A,B,AB}

where

MSA = SSA
(a − 1)

, MSB = SSB
(b − 1)

MSAB = SSAB
(a − 1)(b − 1)

, MSError = SSError
ab(n − 1)

SSTotal =
a∑

i=1

b∑

j=1

n∑

k=1

(yijk − y...)
2

= bn
a∑

i=1

(yi.. − y...)
2 + an

b∑

j=1

(y.j. − y...)
2 + n

a∑

i=1

b∑

j=1

(yij. − yi.. − y.j. + y...)
2

+
a∑

i=1

b∑

j=1

n∑

k=1

(yijk − y...)
2

= SSA + SSB + SSAB + SSError

The sum of squares is used to construct Table8.4.
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Table 8.4 ANOVA table for two-factor factorial design

Source of
variation

Sum of squares Degree of
freedom

Mean square F0

A SSA a − 1 MSA = SSA
(a−1) F0,A = MSA

MSError

B SSB b − 1 MSB = SSB
(b−1) F0,B = MSB

MSError

AB SSAB (a − 1)(b − 1) MSAB =
SSAB

(a−1)(b−1)

F0,AB = MSAB
MSError

Error SSError ab(n − 1) MSError =
SSError
ab(n−1)

Total SSTotal abn − 1

Table 8.5 ANOVA table for joint strength in parachute webbing

Source of variation Sum of squares Degree of freedom Mean square F0

A 560.4 1 560.4 93.4

B 3070.2 2 1535.1 255.85

AB 131.1 2 65.55 10.925

Error 36 6 6

Total 3797.7 11

The calculations for the given problem are shown below.

SSTotal =
2∑

i=1

3∑

j=1

2∑

k=1

y2ijk − y2...
2 × 3 × 2

= 37718 − 6382

12
= 3797.7

SSA = 1

3 × 2

2∑

i=1

y2i.. − y2...
2 × 3 × 2

= 1

3 × 2
[2782 + 3602] − 6382

12
= 560.4

SSB = 1

2 × 2

2∑

i=1

y2.j. − y2...
2 × 3 × 2

= 1

2 × 2
[1392 + 2042 + 2952] − 6382

12
= 3070.2

SSTotal = 1

2

2∑

i=1

3∑

j=1

y2ij. − y2...
2 × 3 × 2

− SSA − SSB = 37682 − 33920.3 − 560.4 − 3070.2 = 131.1

SSError = 36.

The ANOVA is shown in Table8.5.

Step 4: Specification of Critical Region

The null hypothesis is rejected if F0 > Fα,a−1,ab(n−1) = F0.05,1,6 = 5.99 for factor
A, F0 > Fα,b−1,ab(n−1) = F0.05,1,6 = 5.99 for factor B, F0 > Fα,(a−1)(b−1),ab(n−1)

= F0.05,2,6 = 5.14 for factor AB. (See TableA.11 for the above-mentioned F-
values.)
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Step 5: Take a Decision

As the values of the test statistic for factor A, factor B, and their interaction fall in the
adopted critical region, we reject the null hypothesis. We thus conclude that factor
A, factor B, and their interaction are significant at 0.05 level of significance.

8.2.4 Multiple Comparison Among Treatment Means

In order to compare among the treatment means, Tukey’s test or Fisher’s test can be
used. The details of these tests are already given in Chap. 7. However, the comparison
between the means of one factor (e.g., A) may be obscured by AB interaction if it is
significant. Therefore, one approach that can be taken in such a situation is to fix a
factor B at a specified level and apply Tukey’s test and Fisher’s test to the means of
factor A at that level. This is illustrated below.

Suppose we are interested in detecting differences among the means of length
of overlap (factor A). As the interaction is significant in this case, we make the
comparison at one level of stitch density (factor B), low level. Further, we consider
that the mean sum of squares due to error is the best estimate of error variance under
the assumption that the experimental error variance is the same over all treatment
combinations. This procedure can be extended to compare the differences between
the means of length of overlap at all levels of stitch density. The treatment means at
different levels of stitch density are shown in Table8.6.

As per Tukey’s test, the difference between any pair of means will be significant
if it exceeds

Tα = qα(a, f )

√
MSError

n
= q0.05(2, 6)

√
6

2
= 5.99.

(From TableA.17, q0.05(2, 6) = 3.46)
Here, all the differences inmean values at any level of stitch density are significant.

As per Fisher’s test, the difference between any pair of means will be significant if
it exceeds the least significant difference (LSD) as calculated hereunder

LSD = t 0.05
2 ,6

√
MSError

n
= 4.238.

Table 8.6 Mean values of strength of parachute webbing

Length of overlap Stitch density

Low Medium High

Short 30.0 39.5 69.5

Long 39.5 62.5 78.0
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Here also, all the differences in mean values at any level of stitch density exceed the
least significant difference. Hence, all the differences in mean values are significant.

8.3 Three-Factor Factorial Design

Sometimes, it is required to carry out experiments involving three factors with each
factor having same level or different levels. This type of factorial design is known as
three-factor factorial design. An example of this design is given below.

8.3.1 A Practical Problem

A factorial experiment was carried out in duplicate to analyze the effects of temper-
ature, concentration, and time on the amount of a certain metal recovered from an
ore sample of a given weight. The temperature was varied at two levels (1600 and
+1900 ◦C), concentration at two levels (30 and 35%), time at two levels (1h and
3h). The results of experiments are shown in Table8.7.

8.3.2 Descriptive Model

In a general three-factor factorial experiment, where factor A is at ith level (i =
1, 2, . . . , a), factor B is at jth level (j = 1, 2, . . . , b), factor C is at kth level (k =
1, 2, . . . , c) for lth replicate (l = 1, 2, . . . , n), the response yijkl can be described by
the following linear statistical model

yijkl = μ + τi + βj + γk + (τβ)ij + (βγ )jk + (γβ)ki + (τβγ )ijk + εijkl;

Table 8.7 Experimental data

Temperature

1600 ◦C 1900 ◦C
Concentration Concentration

30% 60% 30% 60%

Time Time Time Time

1h 3h 1h 3h 1h 3h 1h 3h

80 81 69 91 65 84 74 93

62 79 73 93 63 86 80 93
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i = 1, 2, . . . , a; j = 1, 2, . . . , b; k = 1, 2, . . . , c; l = 1, 2, . . . , n

where yijkl is a random variable denoting the ijklth observation, μ is a parameter
common to all levels called the overall mean, τi is a parameter associated with the
ith level effect of factor A, βj is a parameter associated with jth level effect of factor
B, γk is a parameter associated with the kth level of factor C, and εijkl is a random
error component. This corresponds to a fixed effect model.

The following are the reasonable estimates of the model parameters

μ̂ = y.... where y.... = 1

abcn

a∑

i=1

b∑

j=1

c∑

k=1

n∑

l=1

yijkl

τ̂i = yi... − μ̂ where yi... = 1

bcn

b∑

j=1

c∑

k=1

n∑

l=1

yijkl

β̂j = y.j.. − μ̂ where y.j.. = 1

acn

a∑

i=1

c∑

k=1

n∑

l=1

yijkl

γ̂k = y..k. − μ̂ where y..k. = 1

abn

a∑

i=1

b∑

j=1

n∑

l=1

yijkl

̂(τβ)ij = yij.. − μ̂ − τ̂i − β̂j where yij.. = 1

cn

c∑

k=1

n∑

l=1

yijkl

̂(βγ )jk = y.jk. − μ̂ − β̂j − γ̂k where y.jk. = 1

an

a∑

i=1

n∑

l=1

yijkl

̂(γ τ)ik = yi.k. − μ̂ − γ̂k − τ̂i where yi.k. = 1

bn

b∑

j=1

n∑

l=1

yijkl

̂(αβγ )ijk = yijk. − μ̂ − τ̂i − β̂j − γ̂k − ̂(τβ)ij − ̂(βγ )jk − ̂(γ τ)ki where yijk. = 1

n

n∑

l=1

yijkl

The estimate of the observation is

yijkl = μ̂ + τ̂i + β̂j + γ̂k + ̂(τβ)ij + ̂(βγ )jk + ̂(γβ)ki + ̂(τβγ )ijk

The residual is
eijkl = yijkl − ŷijkl

These formulas are used to estimate the observations and the residuals. They along
with the experimental results are reported in Table8.8. The numbers mentioned in
the parentheses, curly brackets, and square brackets represent experimental values,
fitted values, and residuals, respectively. It is now necessary to check if the model is
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Table 8.8 Experimental data, fitted data, and residuals

Temperature

1600 ◦C 1900 ◦C
Concentration Concentration

30% 60% 30% 60%

Time Time Time Time

1h 3h 1h 3h 1h 3h 1h 3h

(80)
{71}
[9]

(81)
{80}
[1]

(69)
{71}
[−2]

(91)
{92}
[−1]

(65)
{64}
[1]

(84)
{85}
[−1]

(74)
{77}
[−3]

(93)
{93}
[0]

(62)
{71}
[−9]

(79)
{80}
[−1]

(73)
{71}
[2]

(93)
{92}
[1]

(63)
{64}
[−1]

(86)
{85}
[1]

(80)
{77}
[3]

(93)
{93}
[0]

adequate or not. Themethodsof checkingmodel adequacy are described inSect. 8.2.3.
The reader is required to carry out this and conclude on the adequacy of the model.

8.3.3 Test of Hypothesis

This is done as stated below.

Step 1: Statement of Hypothesis

We are interested in testing the equality of treatment means. Here, factor A, factor
B, and factor C are equally important. Then, the null hypothesis about the equality
of treatment effects of A is

H0 : τ1 = τ2 = · · · = τa = 0

and the alternative hypothesis is H1 : τi �= 0 for at least one i.
Similarly, for the equality of treatment effects of B, the null hypothesis is

H0 : β1 = β2 = · · · = βb = 0

and the alternative hypothesis is H1 : βj �= 0 for at least one j.
Similarly, for the equality of treatment effects of C, the null hypothesis is

H0 : γ1 = γ2 = · · · = γc = 0

and the alternative hypothesis is H1 : γk �= 0 for at least one k.
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We are also interested in interaction effects of treatments. Thus, we also wish to
test

H0 : (τβ)ij = 0 ∀ i, j against H1 : (τβ)ij �= 0 for at least one i, j

H0 : (βγ )jk = 0 ∀ j, k against H1 : (βγ )jk �= 0 for at least one j, k

H0 : (γ α)ki = 0 ∀ k, i against H1 : (γ α)ki �= 0 for at least one k, i

H0 : (αβγ )ij = 0 ∀ i, j, k against H1 : (αβγ )ij �= 0 for at least one i, j, k.

Step 2: Choice of Level of Significance

The level of significance, usually denoted by α, is stated in terms of some small
probability value such as 0.10 (one in ten) or 0.05 (one in twenty) or 0.01 (one in a
hundred) or 0.001 (one in a thousand) which is equal to the probability that the test
statistic falls in the critical region, thus indicating falsity of H0.

Step 3: Find Out the Value of Test Statistics

The test statistics are stated below

F0,i = MSi
MSError

, i ∈ {A,B,C,AB,CA,BC,ABC}

where

MSA = SSA
(a − 1)

, MSB = SSB
(b − 1)

MSC = SSC
(c − 1)

, MSAB = SSAB
(a − 1)(b − 1)

MSBC = SSBC
(b − 1)(c − 1)

, MSCA = SSCA
(c − 1)(a − 1)

MSABC = SSABC
(a − 1)(b − 1)(c − 1)

SSTotal =
a∑

i=1

b∑

j=1

c∑

k=1

n∑

l=1

y2ijkl − y2...
abcn

SSA = 1

bcn

a∑

i=1

y2i... − y2....
abcn

, SSB = 1

acn

b∑

j=1

y2.j.. − y2....
abcn

SSC = 1

abn

c∑

k=1

y2..k. − y2....
abcn

, SSAB = 1

cn

a∑

i=1

b∑

j=1

y2ij.. − y2....
abcn

− SSA − SSB
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Table 8.9 ANOVA table

Source of variation Sum of squares Degree of freedom Mean square F0

Temperature 6.25 1 6.25 0.26

Concentration 272.25 1 272.25 11.11

Time 1122.25 1 1122.25 45.81

Temperature × concentration 20.25 1 20.25 0.83

Concentration × time 12.25 1 12.25 0.5

Time × temperature 12.25 1 12.25 0.5

Temperature × concentration ×
time

72.25 1 72.25 2.95

Error 196 8 24.5

Total 1713.75 15

SSCA = 1

bn

a∑

i=1

c∑

k=1

y2i.k. − y2....
abcn

− SSC − SSA,

SSABC = 1

n

a∑

i=1

b∑

j=1

c∑

k=1

y2ijk. − y2....
abcn

− SSA − SSB − SSC − SSAB − SSBC − SSCA

SSError = SSSTotal − SSA − SSB − SSC − SSAB − SSBC − SSCA − SSABC

These formulas are used to construct Table8.9.

Step 4: Specification of Critical Region

The null hypothesis is rejected if F0 > Fα,a−1,abc(n−1) = F0.05,1,8 = 5.32
(TableA.11) for factor A,

F0 > Fα,b−1,abc(n−1) = F0.05,1,8 = 5.32 for factor B,

F0 > Fα,c−1,abc(n−1) = F0.05,1,8 = 5.32 for factor C,

F0 > Fα,(a−1)(b−1),abc(n−1) = F0.05,1,8 = 5.32 for factor AB.

F0 > Fα,(b−1)(c−1),abc(n−1) = F0.05,1,8 = 5.32 for factor BC.

F0 > Fα,(c−1)(a−1),abc(n−1) = F0.05,1,8 = 5.32 for factor CA.

F0 > Fα,(a−1)(b−1)(c−1),abc(n−1) = F0.05,1,8 = 5.32 for factor ABC.

Step 5: Take a Decision

If the calculated F-value is higher than the table F-value, then the null hypothesis is
rejected and the alternative hypothesis is accepted; otherwise, the null hypothesis is
not rejected.
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Hence, in this case, concentration, time, and interaction among temperature, con-
centration, and time are found to be significant at 0.05 level of significance.

8.4 22 Factorial Design

It is generally known that the factorial designs are more efficient than the one-factor-
at-a-time experiments. Especially when the factors are interacting with each other,
the factorial designs are preferred to avoid misleading conclusions. Also, by using
factorial designs, it is possible to estimate the effects of a factor at several levels of the
other factors, therebymaking the conclusions valid over awide range of experimental
conditions. In the following sections, we will learn about factorial designs in more
detail.

8.4.1 Display of 22 Factorial Design

The 22 factorial design involves two factors, say A and B, and each runs at two levels,
say high and low, thus yielding four runs in one replicate. The design matrix of a 22

factorial design is displayed in Table8.10. Here, the low level of a factor is indicated
by − sign and the high level of a factor is denoted by + sign. In this table, the
column under factor A is filled with − sign and + sign alternately and the column
under factorB is filledwith pairs of− sign and+ sign alternately. As shown, there are
four treatment combinations (low A and low B, high A and low B, low A and high B,
highA and highB) and each treatment combination is replicated n times. Hence, there
are 4 × n runs in total.While performing the experiment, these runs are required to be
randomized. Customarily, the summations of the observations obtained at different
treatment combinations are indicated by (1), a, b, and ab, respectively. It can be seen
that the high value of any factor is denoted by the corresponding lowercase letter
and that the low value of a factor is indicated by the absence of the corresponding
letter. Thus, a represents the treatment combination where A is at high level and B
is at low level, b represents the treatment combination where B is at high level and

Table 8.10 Design matrix of 22 factorial design

Factor Replicate Total

A B I II . . . n

− − . . .
∑ = (1)

+ − . . .
∑ = a

− + . . .
∑ = b

+ + . . .
∑ = ab
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Fig. 8.1 Geometrical view
of 22 factorial design

A is at low level, and ab denotes the treatment combination where A and B are both
at high level. Sometimes, a 22 factorial design is represented by its geometric view
as shown in Fig. 8.1.

8.4.2 Analysis of Effects in 22 Factorial Design

Let us now analyze the effects of the factors. By convention, the main effect of a
factor is denoted by a capital Latin letter. Thus, “A” refers to the main effect of A, “B”
denotes themain effect ofB, and “AB” indicate themain effect ofAB interaction. The
main effect of A is defined by the difference between the average of the observations
when A is at higher level and the average of the observations when A is at lower level.
This is expressed hereunder.

A = yA+ − yA− = ab + a

2n
− b + (1)

2n
= 1

2n
[ab + a − b − (1)]

Here, y denotes the observations. Similarly, the main effect of B is defined by the
difference between the average of the observations when B is at higher level and the
average of the observations when B is at lower level. This is shown below.

B = yB+ − yB− = ab + a

2n
− a + (1)

2n
= 1

2n
[ab + b − a − (1)]

In a similar manner, the interaction effect of AB is defined by the difference between
the average of the observations when the product of AB is at higher level and the
average of the observations when the product of AB is at lower level.
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AB = y(AB)+ − y(AB)− = ab + (1)

2n
− a + b

2n
= 1

2n
[ab − a − b − (1)]

Often, in a 22 factorial experiment, we need to examine the magnitude and direction
of the factor effects in order to determine which factors are likely to be important.
The analysis of variance can generally be used to confirm this interpretation. There
are many statistical software packages available that perform calculations for anal-
ysis of variance almost instantly. However, there are time-saving methods available
for performing the calculations manually. One of them is based on calculation of
contrasts. The contrast of a factor is defined by the total effect of the factor. For
example, the contrast of factor A is expressed as follows.

ContrastA = ab + a − b − (1)

Similarly, the contrast of factor B is expressed as follows.

ContrastB = ab + b − a − (1)

The contrast of interaction effect AB is expressed as

ContrastAB = ab + (1) − b − a.

The contrasts are used to compute the sum of squares for the factors. The sum of
squares for a factor is equal to the square of the contrast divided by the number of
observations in the contrast. According to this definition, the sum of squares for the
factors A, B, and AB can be expressed as follows

SSA = ContrastA
4n

= [ab + a − b − (1)]2
4n

SSB = ContrastB
4n

= [ab + b − a − (1)]2
4n

SSAB = ContrastAB
4n

= [ab + (1) − a − b]2
4n

The total sum of squares can be found as usual in the following manner

SSTotal =
2∑

i=1

2∑

j=1

n∑

k=1

y2ijk. −
y2....
4n

Then, the sum of squares due to error can be found as follows

SSError = SSTotal − SSA − SSB − SSAB
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The complete analysis of variance can be obtained as shown in Table9.4 considering
a = 2 and b = 2.

8.4.3 A Practical Problem

Let us consider the example of electro-conductive yarn as discussed in Sect. 1.3.2 of
Chap.1. Polymerization time is denoted as factor A, and polymerization temperature
is referred to as factor B. The low and high levels of polymerization time correspond
to 20 and 60min, respectively, and the low and high levels of polymerization tem-
perature correspond to 10 and 30 ◦C, respectively. The experiment was performed in
accordance with a 22 factorial design. Each of the four treatment combinations was
replicated twice. Thus, in total, eight runs were carried out. The standard order of the
runs is displayed under standard order column in Table8.11. While performing the
experiment, the order of these runs was randomized and the sequence of experiment
was carried out as mentioned under run order column in Table8.11. The results of
experiments are also shown in Table8.11. The geometric view of this experiment is
displayed in Fig. 8.2.

Let us now analyze the main and total effects of the factors A, B, and AB. Using
the expressions stated earlier, these main effects are calculated as follows.

A = 1

2 × 2
[11.6 + 42.4 − 23.2 − 33.4] = −0.65

B = 1

2 × 2
[11.6 + 23.2 − 42.4 − 33.4] = −10.25

A = 1

2 × 2
[11.6 − 42.4 − 23.2 + 33.4] = −5.15

Table 8.11 Standard order, run order, and experimental results

Standard order Run order A B Response (k�/m)

8 1 + + 6.4

7 2 − + 12.4

4 3 + + 5.2

1 4 − − 15.8

5 5 − − 17.6

6 6 + − 22.1

2 7 + − 20.3

3 8 − + 10.8
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Fig. 8.2 Geometrical view
for electro-conductive yarn
experiment

The minus sign before the values for the main effects of A, B, and AB indicates
that the change of levels of the factors A, B, and AB from higher to lower results in
increase of the response (electrical resistivity). It can be also observed that the main
effect of factor B is the highest, followed by that of factors AB and B, respectively.
The main effect of factor A is considerably smaller than that of B and AB.

Let us now analyze the total effect (contrast) of the factors A, B, and AB. Using
the expressions stated earlier, this is obtained as follows.

ContrastA = 11.6 + 42.2 − 23.2 − 33.4 = −2.6

ContrastB = 11.6 + 23.2 − 42.4 − 33.4 = −41

ContrastAB = 11.6 − 42.2 − 23.2 + 33.4 = −20.6

The contrasts are then used to calculate the sums of squares as shown below.

SSA = (−2.6)2

4 × 2
= 0.845, SSB = (−41)2

4 × 2
= 210.125

SSAB = (−20.6)2

4 × 2
= 53.045

The total sum of squares can be found as usual in the following manner

SSTotal = 15.82 + 17.62 + 20.32 + 22.12 + 10.82 + 12.42 + 5.22 + 6.42

− (15.8 + 17.6 + 20.3 + 22.1 + 10.8 + 12.4 + 5.2 + 6.4)2

4 × 2
= 269.255
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Table 8.12 ANOVA table for electro-conductive yarn experiment

Source of
variation

Sum of squares Degree of freedom Mean square F0

A 0.845 1 0.845 0.645

B 210.125 1 210.125 160.4

AB 53.045 1 53.045 40.49

Error 5.24 4 1.31

Total 269.255 7

Then, the sum of squares due to error can be found as follows

SSError = 269.255 − 0.845 − 210.125 − 53.045 = 5.24

The analysis of variance is summarized in Table8.12. If the level of significance is
taken as 0.05, then the critical region can be adopted as follows

F0 > Fα,1,4(n−1) = F0.05,1,4 = 7.71

See TableA.11 for this.
As the values of the test statistic for factor B and factor AB fall in the adopted

critical region and the value of the test statistic for factorA does not fall in the adopted
critical region, we conclude that factor B (polymerization temperature) and factor
AB (interaction between polymerization time and polymerization temperature) are
significant at 0.05 level of significance, but factor A (polymerization time) is not
significant.

8.4.4 Regression Model

In the case of a 22 factorial design, it is easy to develop a regression model for
predicting the response over a wide range of experimental conditions. The regression
model is stated below

y = β0 + β1x1 + β2x2 + β12x1x2 + ε

where y denotes response, x1 & x2 indicate the coded variables representing the
factors, βs are the regression coefficients, and ε refers to residual. The relation-
ship between the coded variables and the natural variables is discussed below. Take
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Table 8.13 Experimental values, fitted values, and residuals for electro-conductive yarn experiment
Time
(min)

Temperature
(◦)C

x1 (−) x2 (−) Experimental value(k�/m) Fitted value (k�/m) Residual (k�/m)

I II

20 10 −1 −1 15.8 17.6 16.7 −0.9 0.9

60 10 1 −1 20.3 22.1 21.2 −0.9 0.9

20 30 −1 1 10.8 12.4 11.6 −0.8 0.8

60 30 1 1 5.2 6.4 5.8 −0.6 0.6

the case of electro-conductive yarn experiment. The natural variables are time and
temperature. Then, the relationship between coded and natural variable is

x1 = Time − (Timelow + Timehigh)/2

(Timehigh − Timelow)/2
= Time − (20 + 60)/2

(60 − 20)/2
= Time − 40

20

x2 = Temperature − (Temperaturelow + Temperaturehigh)/2

(Temperaturehigh − Temperaturelow)/2

= Temperature − (10 + 30)/2

(30 − 10)/2
= Temperature − 20

10

The fitted regression model is

ŷ = 13.825 +
(−0.65

2

)
x1 +

(−10.25

2

)
x2 +

(−5.15

2

)
x1x2

where the intercept is the grand average of all eight observations and the regression
coefficients are one-half of the corresponding main effect of the factors. The reason
for the regression coefficient is one-half of the main effect is stated below. It is known
that the regression coefficient measures the effect of a unit change in x on the mean
of y. But, the main effect was calculated based on two unit (−1 to +1) change of
x. Hence, it is required to take one-half of the main effect as regression coefficient.
Using the above equation, the fitted values and residuals are calculated as shown
in Table8.13. The coefficient of determination is found as follows: R2 = 0.9805
and adjusted R2 = 0.9659. It is now necessary to check if the model is adequate or
not. Figure8.3 presents a normal probability plot of the residuals and a plot of the
residuals versus the fitted values. The plots appear satisfactory; hence, there is no
reason to suspect that the model is not adequate.

Sometimes, it is desirable to express the fitted equation in terms of natural vari-
ables. This can be done as follows.
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Fig. 8.3 Plots of residuals for electro-conductive yarn experiment

ŷ = 13.825 +
(−0.65

2

) (
Time − 40

20

)
+

(−10.25

2

) (
Temperature − 20

10

)

+
(−5.15

2

) (
Time − 40

20

) (
Temperature − 20

10

)

= 14.4250 + 0.2413 Time + 0.0250 Temperature − 0.0129 TimeTemperature

8.4.5 Response Surface

The regression model

ŷ = 13.825 +
(−0.65

2

)
x1 +

(−10.25

2

)
x2 +

(−5.15

2

)
x1x2

can be used to generate response surface and contour plots. The response surface
plot provides a three-dimensional view of the response surface, while the contour
plot is a two-dimensional plot such that all data points that have the same response
are connected to produce contour lines of constant responses. These plots are often
found to be useful for optimizing the response. Figure8.4 displays response surface
and contour plots of resistivity obtained from the model. As shown, the response
surface has a curvature, which is arising from the interaction between the factors. It
can be seen that the minimum resistivity can be obtained at higher levels of time and
temperature. This can be obtained by employing response surface methodology of
analysis.
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Fig. 8.4 Response surface
and contour plots

8.5 23 Factorial Design

In the last section, we have learnt how to analyze the results of experiments carried
out the following 22 factorial design. In this section, we will learn 23 factorial design.

8.5.1 Display of 23 Factorial Design

The 23 factorial design involves three factors, say A, B, and C, and each runs at two
levels, say high and low, thus yielding eight runs in one replicate. The design matrix
of a 23 factorial design is displayed in Table8.14. Like 22 factorial design, the low
level of a factor is indicated by “−” sign and the high level of a factor is denoted by

Table 8.14 Design matrix of 23 factorial design

Factor Replicate Total

A B C I II . . . n

− − − . . .
∑ = (1)

+ − − . . .
∑ = a

− + − . . .
∑ = b

+ + − . . .
∑ = ab

− − + . . .
∑ = c

+ − + . . .
∑ = ac

− + + . . .
∑ = bc

+ + + . . .
∑ = abc
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Fig. 8.5 Geometric view of
23 factorial design

“+” sign. In this table, the column under factor A is filled with “−” sign and “+”
sign alternately, the column under factor B is filled with pairs of “−” sign and “+”
sign alternately, and the column under factor C is filled with four “−” signs and four
“+” signs alternately. As shown, there are eight treatment combinations and each
treatment combination is replicated n times. Hence, there are 4 × n runs in total.
While performing the experiment, these runs are required to be randomized.

Customarily, the summations of the observations obtained at eight different treat-
ment combinations are indicated by (1), a, b, ab, c, ac, bc, and abc, respectively.
Here again, it can be seen that the high value of any factor is denoted by the cor-
responding lowercase letter and that the low value of a factor is indicated by the
absence of the corresponding letter. Thus, a represents the treatment combination
where A is at high level and B and C are at low level, b represents the treatment
combination where B is at high level and A and C are at low level, and c represents
the treatment combination where C is at high level and A and B are at low level, ab
denotes the treatment combination where A and B are both at high level and C is at
low level, ac denotes the treatment combination where A and C are both at high level
and B is at low level, bc denotes the treatment combination where B and C are both
at high level and A is at low level, and abc denotes the treatment combination where
A, B, and C are all at high level. Sometimes, a 23 factorial design is represented by
its geometric view as shown in Fig. 8.5.

8.5.2 Analysis of Effects in 23 Factorial Design

This is carried out in a similar way as it was done earlier in 22 factorial design. The
main effect of A is defined by the difference between the average of the observations
when A is at higher level and the average of the observations when A is at lower level.
This is expressed below.
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A = yA+ − yA− = a + ab + ac + abc

4n
− (1) + b + c + bc

4n

= 1

4n
[a + ab + ac + abc − (1) − b − c − bc]

Similarly, the main effects of B and C are expressed as follows

B = yB+ − yB− = b + ab + bc + abc

4n
− (1) + a + c + ac

4n

= 1

4n
[b + ab + bc + abc − (1) − a − c − ac]

C = yC+ − yC− = c + ac + bc + abc

4n
− (1) + a + b + ab

4n

= 1

4n
[c + ac + bc + abc − (1) − a − b − ab]

The interaction effect of AB is defined by the difference between the average of
the observations when the product of AB is at higher level and the average of the
observations when the product of AB is at lower level.

AB = y(AB)+ − y(AB)− = (1) + ab + c + abc

4n
− a + b + bc + ac

4n

= 1

4n
[abc − bc + ab − b − ac + c − a + (1)]

AC = y(AC)+ − y(AC)− = (1) + b + ac + abc

4n
− a + ab + c + bc

4n

= 1

4n
[(1) − a + b − ab − c + ac − bc + abc]

BC = y(BC)+ − y(BC)− = (1) + a + bc + abc

4n
− b + ab + c + ac

4n

= 1

4n
[(1) + a − b − ab − c − ac + bc + abc]

ABC = y(ABC)+ − y(ABC)− = a + b + c + abc

4n
− ab + bc + ac + (1)

4n

= 1

4n
[abc − bc − ac + c − ab + b + a − (1)]

As known, the contrast of a factor is defined by the total effect of the factor. According
to this, the contrasts are expressed as follows.

ContrastA = [a − (1) + Ab − b + ac − c + abc − bc]

ContrastB = [b + ab + bc + abc − (1) − a − c − ac]

ContrastA = [c + ac + bc + abc − (1) − a − b − ab]
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ContrastAB = [abc − bc + ab − b − ac + c − a + (1)]

ContrastAC = [(1) − a + b − ab − c + ac − bc + abc]

ContrastBC = [(1) + a − b − ab − c − ac + bc + abc]

ContrastABC = [abc − bc − ac + c − ab + b + a − (1)]

The contrasts are used to calculate the sum of squares. The sum of squares of a factor
is equal to the square of the contrast divided by the number of observations in the
contrast. According to this, the sum of squares is expressed as follows.

SSA = [a − (1) + ab − b + ac − c + abc − bc]2
8n

SSB = [b + ab + bc + abc − (1) − a − c − ac]2
8n

SSC = [c + ac + bc + abc − (1) − a − b − ab]2
8n

SSAB = [abc − bc + ab − b − ac + c − a + (1)]2
8n

SSAC = [(1) − a + b − ab − c + ac − bc + abc]2
8n

SSBC = [(1) + a − b − ab − c − ac + bc + abc]2
8n

SSABC = [abc − bc − ac + c − ab + b + a − (1)]2
8n

The total sum of squares can be found as usual in the following manner

SSTotal =
2∑

i=1

2∑

j=1

2∑

k=1

n∑

l=1

y2ijkl − y2....
4n

where y.... =
2∑

i=1

2∑

j=1

2∑

k=1

n∑

l=1

yijkl
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Table 8.15 ANOVA table

Source of
variation

Sum of squares Degree of
freedom

Mean square F0

A SSA 1 MSA = SSA
1

MSA
MSError

B SSB 1 MSB = SSB
1

MSB
MSError

C SSC 1 MSC = SSC
1

MSC
MSError

AB SSAB 1 MSAB = SSAB
1

MSAB
MSError

BC SSBC 1 MSBC = SSBC
1

MSBC
MSError

AC SSAC 1 MSAC = SSAC
1

MSAC
MSError

ABC SSABC 1 MSABC = SSABC
1

MSABC
MSError

Error SSError 8(n − 1) MSError = SSError
8(n−1)

Total SSTotal 8n − 1

Then, the sum of squares due to error can be found as follows

SSError = SSTotal − SSA − SSB − SSC − SSAB − SSAC − SSBC − SSABC

The complete analysis of variance can be obtained as shown in Table8.15.

8.5.3 Yates’ Algorithm

There is a quicker method available for analyzing data of a 2n factorial experiment,
where n stands for number of factors. This method is based on Yates’ algorithm. The
steps of Yates’ algorithm are stated below.

Step 1: Write down the results of a 2n factorial experiment in a standard order. The
standard orders of a few 2n factorial designs are

22 factorial design : 1, a, b, ab
23 factorial design : 1, a, b, ab, c, ac, bc, abc
24 factorial design : 1, a, b, ab, c, ac, bc, abc, d , ad , bd , abd , cd , acd , bcd , abcd

Step 2:Write down the response totals for the corresponding treatment combinations
in the next column. Label this column as y.

Step 3: Create n number of columns after column y. Here, n stands for number of
factors. In the first of these columns (labeled as column C1), the first half of the
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entries from the top are obtained by adding the pairs from column y and the last half
of the entries are obtained by subtracting the top number of each pair from the bottom
number of that pair from column y. Just as the entries in column C1 are obtained
from column y, the entries in next column (column C2) are obtained from column C1
in the same way, those in next column (column C3) from those in column C2, and so
on. This process continues until n number of columns labeled as C1, C2, C3,. . .,Cn

are generated.

Step 4: Create a column just after column Cn, and label it as “factor effect” column.
The entries in this column are found by dividing the first entry in column Cn by
(k × 2n) and the remaining entries by (k × 2n−1), where k stands for number of
replicates.

Step 5: Create a column just after “factor effect” column, and label it as “factor sum
of squares” column. The entries in this column are obtained by squaring the entries
in column Cn and dividing by (k × 2n), though no sum of squares is attributable to
the first row, which represents overall mean of the data.

Step 6: Create one more column just after “factor sum of squares” column, and label
it as “factor.” This column identifies the factor combinations corresponding to the
sums of squares just calculated. They are found by writing down the factor letters
corresponding to the “+” signs in the first n number of column of the table.

8.5.4 A Practical Example

The chemical stability of an enzyme in a buffer solutionwas studied. The three factors
of interest were buffer type, pH, and temperature. Two types of buffer (phosphate
and pipes), two levels of pH (6.8 and 7.8), and two levels of temperature (25 and
30 ◦C) were selected. The percentage decomposition of a solution of the enzyme
was measured and considered as response. Let us denote the three factors, namely
buffer type, pH, and temperature as A, B, andC, respectively. The phosphate buffer is
considered as low level, while the pipes buffer is taken as high level. The pH of 6.8 is
considered as low level, while the pH of 7.8 is taken as high level. The temperature of
25 ◦C is considered as low level, and the temperature of 30 ◦C is taken as high level.
The low level is indicated by “−” sign, and the high level is indicated by “+” sign.
A 23 factorial design of experiment with three replicates was carried out. Thus, in
total, twenty-four runs were carried out. The standard order of the runs is displayed
under “standard order” column in Table8.16. While performing the experiment, the
order of these runs was randomized and the sequence of experiment was carried out
as mentioned under “run order” column in Table8.16. The results of experiments
are also shown in Table8.16. The geometric view of this experiment is displayed in
Fig. 8.6.
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Table 8.16 Standard order, run order, and experimental results for chemical stability experiment

Standard order Run order A B C Response

23 1 − + + 8.7

7 2 − + + 8.1

21 3 − − + 12.1

6 4 + − + 7.3

14 5 + − + 6.1

13 6 − − + 13.4

1 7 − − − 6.2

3 8 − + − 2.4

2 9 + − − 0

16 10 + + + 1.8

10 11 + − − 0.4

20 12 + + − 0

11 13 − + − 5.3

22 14 + − + 8.8

5 15 − − + 13

9 16 − − − 9.3

4 17 + + − 0.8

24 18 + + + 0

19 19 − + − 3.9

15 20 − + + 9.4

17 21 − − − 7.2

12 22 + + − 0

8 23 + + + 3

18 24 + − − 0

Fig. 8.6 Geometric view of
enzyme stability experiment
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Let us now analyze the main and total effects of the factors A, B, C, AB, AC, BC,
and ABC. Using the expressions stated earlier, these main effects are calculated as
follows.

A = 1

4 × 3
[0.4 + 0.8 + 22.2 + 4.8 − 22.7 − 11.6 − 38.5 − 26.2] = −5.9

B = 1

4 × 3
[11.6 + 0.8 + 26.2 + 4.8 − 22.7 − 0.4 − 38.5 − 22.2] = −3.37

C = 1

4 × 3
[38.5 + 22.2 + 26.2 + 4.8 − 22.7 − 0.411.6 − 0.8] = 4.68

AB = 1

4 × 3
[4.8 − 26.2 + 0.8 − 11.622.2 + 38.5 − 0.4 + 22.7] = 0.53

AC = 1

4 × 3
[22.7 − 0.4 + 11.6 − 0.8 − 38.5 + 22.2 − 26.2 + 4.8] = −0.38

BC = 1

4 × 3
[22.7 + 0.4 − 11.6 − 38.5 − 22.2 + 26.2 + 4.8] = −1.52

ABC = 1

4 × 3
[4.8 − 26.2 − 22.2 + 38.5 − 0.8 + 11.6 + 0.4 − 22.7] = −1.38

The minus sign before the values for the main effects of A, B, AC, BC, and ABC
indicates that the change of levels of these factors from higher to lower results in
an increase of the response (percentage decomposition). On the other hand, the plus
sign before the values for the main effects of C and AB indicates that the change of
levels of these factors from higher to lower results in the decrease of the response
(percentage decomposition). It can also be observed that the main effect of factor A
is the highest, followed by that of factors C, B, BC, ABC, AB, and AC.

Let us now analyze the total effect (contrast) of the factors A, B, C, AB, AC, BC,
and ABC. Using the expressions stated earlier, this is obtained as follows.

ContrastA = [0.4 + 0.8 + 22.2 + 4.8 − 22.7 − 11.6 − 38.5 − 26.2] = −70.8

ContrastB = [11.6 + 0.8 + 26.2 + 4.8 − 22.7 − 0.4 − 38.5 − 22.2] = −40.44

ContrastC = [38.5 + 22.2 + 26.2 + 4.8 − 22.7 − 0.411.6 − 0.8] = 56.16

ContrastAB = [4.8 − 26.2 + 0.8 − 11.622.2 + 38.5 − 0.4 + 22.7] = 6.36

ContrastAC = [22.7 − 0.4 + 11.6 − 0.8 − 38.5 + 22.2 − 26.2 + 4.8] = −4.56

ContrastBC = [22.7 + 0.4 − 11.6 − 38.5 − 22.2 + 26.2 + 4.8] = −18.24

ContrastABC = [4.8 − 26.2 − 22.2 + 38.5 − 0.8 + 11.6 + 0.4 − 22.7] = −16.56

The contrasts are then used to calculate the sum of squares as shown below.
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Table 8.17 ANOVA table for chemical stability experiment

Source of
variation

Sum of squares Degree of
freedom

Mean square F0

A 208.86 1 208.86 159.44

B 68.14 1 68.14 52.02

C 131.41 1 131.41 100.31

AB 1.69 1 1.69 1.29

AC 0.87 1 0.87 0.66

BC 13.86 1 13.86 10.58

ABC 11.43 1 11.43 8.73

Error 21.02 16 1.31

Total 457.28 23

SSA = (−70.8)2

(8 × 3)
= 208.86, SSB = (−40.44)2

(8 × 3)
= 68.14

SSC = (56.16)2

(8 × 3)
= 131.41, SSAB = (6.36)2

(8 × 3)
= 1.69

SSAC = (−4.56)2

(8 × 3)
= 0.87, SSBC = (−18.24)2

(8 × 3)
= 13.86

SSABC = (−16.56)2

(8 × 3)
= 11.43, SSTotal = 1131.44 − (127.2)2

(8 × 3)
= 457.28

SSError = 457.28 − 436.26 = 21.02

The calculations are summarized in Table8.17. If the level of significance is taken
as 0.05, then the critical region can be adopted as follows

F0 > Fα,1,8(n−1) = F0.05,1,16 = 4.49. (Table A.11)

As the values of the test statistic for factors A, B, C, and interactions between B
and C and among A, B, and C fall in the adopted critical region, we conclude that
the single-factor effects of buffer type, pH, temperature, two-factor interaction effect
between pH and temperature, and three-factor interaction effect among buffer type,
pH, and temperature are significant at 0.05 level of significance.

Yates’ algorithm can be used to analyze the data of the 2n factorial experiment. For
this, the stepsmentioned earlier are followed. At first, a standard order of the design is
created in the first three columns of Table8.18. The low and high levels of each factor
are denoted by “−” sign and “−” sign, respectively, in the first three columns of the
table headed by the letters A, B, andC denoting the factors. In column A, the “−” and
“−” signs appear alternately. In column B, the pairs of “−” and “−” signs alternate.
In column C, four “−” signs alternate with four “−” signs. This is how the standard
order of a 23 factorial design is displayed. The response totals are then mentioned
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Table 8.18 Calculations based on Yates’ algorithm

A B C y C1 C2 C3 Factor
effect

Factor
sum of
squares

Factor

− − − 22.7 23.1 35.5 127.2 5.3 − Mean

+ − − 0.4 12.4 91.7 −70.8 −5.9 208.86 A

− + − 11.6 60.7 −33.1 −40.4 −3.37 68.01 B

+ + − 0.8 31 −37.7 6.4 0.53 1.71 AB

− − + 38.5 −22.3 −10.7 56.2 4.68 131.6 C

+ − + 22.2 −10.8 −29.7 −4.6 −0.38 0.88 AC

− + + 26.2 −16.3 11.5 −19 −1.58 15.04 BC

+ + + 4.8 −21.4 −5.1 −16.6 −1.38 11.48 ABC

in the next column labeled as column y. After this column, three more columns are
created and they are labeled as columns C1, C2, and C3. Note that three columns
are created as the number of factors involved is three. In column C1, the first four
entries are obtained by adding the pairs from column y and the last four entries are
obtained by subtracting the top number of each pair from the bottom number of that
pair from column y. For example, the first entry from top in this column is obtained
as 22.7 + 0.4 = 23.1, the second entry is obtained as follows: 11.6 + 0.8 = 12.4,
the second last entry is obtained as follows: 22.2 − 38.5 = −16.3, and the last entry
is obtained as follows: 4.8 − 26.2 = −21.4. Just as the entries in column C1 are
obtained from column y, the entries in column C2 are obtained from column C1 in
the same way, and those in column C3 are obtained from column C2. The entries in
“factor effect” column are found by dividing the first entry in column C3 by (3 × 2n)
and the remaining entries by (3 × 2n−1). Note that here the divisive factor 3 appears
as the number of replicates is 3. The entries in factor sum of squares are obtained by
squaring the entries in columnCn and dividing by (3 × 2n), though no sum of squares
is attributable to the first row, which represents the overall mean of the data. The final
column identifies the factor combinations corresponding to the sums of squares just
calculated. They are found by writing down the factor letters corresponding to the
“+” signs in the first columns of the table. One can check that the factor effects and
factor sum of squares calculated in this way are practically the same as calculated
earlier for this experiment.

8.6 Blocking and Confounding

There are many situations when it is impossible to carry out all runs in a 2n factorial
design replicated k times under homogeneous conditions. For example, a single batch
of rawmaterial is not enough to perform all the runs. In other cases, a single operator
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cannot perform all the runs or all the runs cannot be performed in a day. In such cases,
the design technique used is known as blocking. This is a very useful technique for
the fact that it is often desirable to deliberately vary the experimental conditions to
ensure that the treatments are equally effective across many situations that are likely
to be encountered in practice. In this part of the chapter, we will discuss on blocking
in 2n factorial design.

8.6.1 Replicates as Blocks

Suppose a 2n factorial design is replicated k times such that each replicate is run
in one block which is defined by a set of nonhomogeneous conditions. The order
of runs in each block (replicate) would be randomized. The nonhomogeneous con-
ditions include but are not limited to different batches, different suppliers, different
operators, etc. Consider the example of electro-conductive yarn experiment discussed
in Sect. 8.4.3 Suppose that only four runs can be performed from a single batch of
electrically conducting monomer (raw material). Then, two batches of raw materials
are required to conduct all the eight runs. The experiment can then be conducted by
considering each replicate as one block such that all the runs in one replicate (block)
can be performed by using a single batch of raw material. Thus, each batch of raw
material corresponds to a block. This is displayed in Table8.19.

The linear statistical model for this design is stated below

yijk = μ + τi + βj + (τβ)ij + δk + εijkl; i = 1, 2; j = 1, 2; k = 1, 2

where yijk is a random variable denoting the ijkth observation, μ is a parameter
common to all levels called the overall mean, τi is a parameter associated with the
ith level effect of factor A, βj is a parameter associated with jth level effect of factor
B, δk is a parameter associated with the kth block effect, and εijk is a random error
component.

Table 8.19 Replicates as
blocks in factorial design for
electro-conductive yarn
experiment

A B Response

− − 15.8 = (1)

+ − 20.3 = a

− + 10.8 = b

+ + 5.2 = ab

− − 17.6 = (1)

+ − 22.1 = a

− + 12.4 = b

+ + 6.4 = ab
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Table 8.20 ANOVA table

Source of
variation

Sum of squares Degree of
freedom

Mean square F0-value

Blocks 5.12 1 5.12

A 0.845 1 0.845 0.6450

B 210.125 1 210.125 160.40

AB 53.045 1 53.045 40.49

Error 0.12 3 1.31

Total 269.255 7

The calculations for the analysis of variance for this design are shown below. It
can be seen that they are very similar to that discussed in Sect. 8.2.3.

SSTotal =
2∑

i=1

2∑

j=1

2∑

k=1

y2ijk − y2...
2 × 2 × 2

= 1798.3 − 110.62

8
= 269.255

SSA = 1

2 × 2

2∑

i=1

y2i.. −
y2...

2 × 2 × 2
= 1529.89 − 110.62

8
= 0.845

SSB = 1

2 × 2

2∑

j=1

y2.j. −
y2...

2 × 2 × 2
= 1739.17 − 110.62

8
= 210.125

SSAB = 1

2

2∑

i=1

2∑

j=1

y2ij. −
y2...

2 × 2 × 2
− SSA − SSB

= 1793.06 − 110.62

8
− 0.845 − 210.125 = 53.045

SSBlock = 1

2 × 2

2∑

k=1

y2..k − y2...
2 × 2 × 2

= 1534.165 − 110.62

8
= 5.12

SSError = SSTotal − SSA − SSB − SSAB − SSBlock
= 269.255 − 0.845 − 210.125 − 53.045 − 5.12 = 0.12.

The results are summarized in Table8.20.
TheF-value obtained from table isF0.05,1,3 = 10.13 (TableA.11). The conclusion

from this analysis is identical to that mentioned earlier and that the block effect is
relatively small.

8.6.2 Confounding

It is a design technique for arranging a factorial experiment in blocks, where the
block size is smaller than the number of treatment combinations in one replicate. It
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is very useful when, for example, a single batch of raw material is not large enough
to make all the required runs. In the following sections, we will discuss the method
of confounding.

Let us take the case of a 22 factorial design. There are three possibilities available
for confounding: (1) confound A with block, (2) confound B with block, and (3)
confound AB with block. Let us analyze these three possibilities one by one. At first,
we consider to confound A with blocks. It means all the treatment combinations that
have “+” sign on A are assigned to Block 1 and all the treatment combinations that
have “+” sign on A are assigned to Block 2. So, the blocks will have the treatment
combination as shown below

Block 1 Block 2
a (1)
ab b

In this case, the block effect is calculated as follows.

Block Effect = yBlock 1 − yBlock2 = a + ab

2
− (1) + b

2
= 1

2
[ab + a − b − (1)]

Remember that the effect of A was earlier calculated as follows

A = yA+ − yA− = a + ab

2
− (1) + b

2
= 1

2
[ab + a − b − (1)]

It can be thus seen that A is confounded to blocks; that is, the main effect of A is
identical (indistinguishable) to the block effect. This is an undesirable situation as
the block effect, in principle, should not affect the main effect. Hence, confounding
A with blocks is not a good proposition.

Let us then consider the second possibility to confound B with blocks. It means
all the treatment combinations that have “+” sign on B are assigned to Block 1 and
all the treatment combinations that have “+” sign on B are assigned to Block 2. So,
the blocks will have the treatment combination as shown below.

Block 1 Block 2
b (1)
ab a

In this case, the block effect is calculated as follows.

Block Effect = yBlock 1 − yBlock2 = b + ab

2
− (1) + a

2
= 1

2
[ab + b − a − (1)]
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Remember that the effect of A was earlier calculated as follows

B = yB+ − yB− = ab + b

2n
− a + (1)

2n
= 1

2n
[ab + b − a − (1)]

It can be thus seen that B is confounded to blocks; that is, the main effect of B is
identical (indistinguishable) to the block effect. This is also not a desirable situation
as the block effect, in principle, should not affect themain effect. Hence, confounding
B with blocks is not a good proposition.

Let us then consider the third possibility to confound ABwith blocks. It means all
the treatment combinations that have “+” sign on AB are assigned to Block 1 and all
the treatment combinations that have “−” sign on AB are assigned to Block 2. So,
the blocks will have the treatment combination as shown below.

Block 1 Block 2
(1) a
ab b

In this case, the block effect is calculated as follows.

Block Effect = yBlock 1 − yBlock2 = (1) + ab

2
− a + b

2
= 1

2
[ab − a − b + (1)]

Remember that the effect of AB was earlier calculated as follows

AB = y(AB)+ − y(AB)− = (1) + ab

2n
− a + b

2n
= 1

2n
[ab − a − b + (1)]

It can be thus seen that AB is confounded to blocks; that is, the interaction effect of A
and B is identical (indistinguishable) to the block effect. This is a desirable situation
as the block effect is not affecting the main effects of A and B. Hence, confounding
AB with blocks is a good proposition. This is why the usual practice is to confound
the highest order interaction with blocks. In case of a 22 factorial design, as AB is
the highest order interaction, AB needs to be confounded with blocks. Similarly, in
case of 23 factorial design, as ABC is the highest order interaction, ABC needs to be
confounded with blocks.

8.6.3 A Practical Example

Suppose, inReplicate I of electro-conductive yarn experiment, discussed inSect. 8.4.3
of this chapter, each of the four treatment combinations requires a certain quantity of
pyrrole and each batch of pyrrole is only large enough for two treatments; hence, two
batches of pyrrole are required for one replicate. If batches of pyrrole are considered
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Fig. 8.7 Running two
blocks for one replicate

Table 8.21 Experimental results

Replicate I

Block Time (min) Temperature (◦C) Resistivity (k�/m)

1 20 10 15.8

60 30 5.2

2 60 10 20.3

20 30 10.8

Replicate II

1 20 10 17.6

60 30 6.4

2 60 10 22.1

20 30 12.4

as blocks, then we must assign two of the four treatment combinations to each block.
In this way, Replicate I and Replicate II are treated. This is illustrated in Fig. 8.7.

The experimental results are reported in Table8.21.
The block effect is calculated as follows.

Block Effect = yBlock 1 − yBlock2

= (15.8 + 5.2) + (17.6 + 6.4)

4
− (20.3 + 10.8) + (22.1 + 12.4)

4
= −5.15

Remember that the interaction effect was calculated earlier as follows.

Interaction Effect = y(AB)+ − y(AB)− = 1

2 × 2
[11.6 − 42.4 − 23.2 + 33.4] = −5.15

Hence, the block effect is identical toAB interaction effect. That is,AB is confounded
with blocks. The sum of squares due to block is calculated as follows

SSBlock = 1

2 × 2

2∑

k=1

y2..k − y2...
2 × 2 × 2

= 452 + 65.62

4
− 110.62

8
= 53.045
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Table 8.22 ANOVA table for electro-conductive yarn experiment

Source of
variation

Sum of squares Degree of
freedom

Mean square F0-value

Blocks (AB) 53.045 1

A 0.845 1 0.845 0.6450

B 210.125 1 210.125 160.40

Error 5.24 4 1.31

Total 269.255 7

Thus, obtained analysis of variance is shown in Table8.22.
The F-value obtained from table is F0.05,1,4 = 7.71 (TableA.11). The conclusion

from this analysis is not identical to that mentioned earlier. This is because the AB
interaction effect was very high.

8.7 Two-Level Fractional Factorial Design

As the number of factors increases, the number of runs required for a complete
factorial design rapidly outgrows the resources for most of the experimenters. For
example, a complete replicate of 26 complete factorial experiment requires 64 runs. In
this design, only 6 of the 63 degrees of freedomare associatedwith themain effect and
15 degrees of freedom are corresponding to two-factor interactions. The remaining
42 degrees of freedom are attributed to three-factor and higher-order interactions.
If the experimenter can reasonably assume that certain higher-order interactions are
negligible, information on themain effects and lower-order interaction effectsmay be
obtained by running a fraction of the complete factorial experiment. Such fractional
factorial designs are often used as screening experiments.

8.7.1 Creation of 23−1 Factorial Design

Suppose there are three factors and each factor has two levels, and the experimenter
cannot conduct eight runs, but can conduct only four runs. It therefore suggests a
one-half fraction of a 23 factorial design. As the design contains 23−1 = 4 treatment
combinations, a one-half fraction of the 23 design is often called a 23−1 factorial
design. Note that a 23 factorial design has eight treatment combinations, but a 23−1

factorial design has only four treatment combinations. Then, the obvious question
is which four of the eight treatment combinations of a 23 factorial design will be
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Table 8.23 Plus and minus signs for 23 factorial design

Treatment combination Factorial effect

I A B AB C AC BC ABC

a + + − − − − + +
b + − + − − + − +
c + − − + + − − +
abc + + + + + + + +
ab + + + + − − − −
ac + + − − + + − −
bc + − + − + − + −
(1) + − − + − + + −

Fig. 8.8 Geometric view of
a 23−1 factorial design with
I = ABC

chosen to form a 23−1 factorial design? The treatment combinations of a 23 factorial
design that yield a plus on theABC effect constitute a 23−1 factorial design. As shown
in Table8.23, the treatment combinations a, b, c, and abc offer a positive sign on
ABC, and they therefore constitute the 23−1 factorial design. Thus, ABC is called the
generator of the particular fraction, known as principal fraction. Further, it can be
seen that the identity column I always bears plus sign, and hence I = ABC is called
the defining relation for this design.

The geometric view of a 23−1 factorial design with I = ABC as the defining
relation is displayed in Fig. 8.8.
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8.7.2 Analysis of Effects in 23−1 Factorial Design with
I = ABC

Let us now analyze the main and interaction effects in a 23−1 factorial design. As
defined earlier, the main effect of a factor is defined by the difference between the
average of the observations when that factor is at higher level and the average of the
observations when that factor is at lower level. Thus, we get

A = yA+ − yA− = a + abc

2
− b + c

2
= 1

4n
[a − b − c + abc]

B = yB+ − yB− = b + abc

2
− a + c

2
= 1

4n
[−a + b − c + abc]

A = yC+ − yC− = c + abc

2
− a + b

2
= 1

2
[−a − b + c + abc]

Similarly, the interaction effect ofAB is defined by the difference between the average
of the observations when the product of AB is at higher level and the average of the
observations when the product of AB is at lower level. This is shown below.

AB = y(AB)+ − y(AB)− = c + abc

2
− a + b

2
= 1

2
[−a − b + c + abc]

BC = y(BC)+ − y(BC)− = a + abc

2
− b + c

2
= 1

2
[a − b − c + abc]

AC = y(AC)+ − y(AC)− = b + abc

2
− a + c

2
= 1

2
[−a + b − c + abc]

We observe that the effects of A, B, and AB are, respectively, the same as the effects
of BC, AC, and AB. If the effect of a factor is same as the effect of another factor, then
the effects are known as alias. Hence, A and BC are aliases, B and AC are aliases,
and C and AB are aliases. This can be found out in another way as shown below.

A = A.I = A.ABC = (A2)BC = I .BC = BC

B = B.I = B.ABC = A(B2)C = AC

C = C.I = C.ABC = AB(C2) = AB

Further, the linear combination of observations used to estimate the main effects of
A, B, and C can be written as follows.

lA = [a − b − c + abc] = A + BC

lB = [−a + b − c + abc] = B + AC

lC = [−a − b + c + abc] = C + AB
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Fig. 8.9 Geometric view of
a 23−1 factorial design with
I = −ABC

8.7.3 Creation of Another 23−1 Factorial Design with
I = −ABC

It is also possible to select the four treatment combinations of a
(3
2

)
factorial design

that yield a minus on the ABC effect to constitute a 23 − 1 factorial design. As shown
in Table8.23, the treatment combinations ab, ac, bc, and (1) offer a negative sign on
ABC and thus constitute another 23−1 factorial design. The identity column I always
bears the minus sign, and hence I = −ABC is called the defining relation for this
design. The geometric view of this design is shown in Fig. 8.9.

8.7.4 Analysis of Effects in 23−1 Factorial Design with
I = −ABC

The main and interaction effects in a 23−1 factorial design with I = −ABC are
determined as mentioned earlier. They are expressed as follows.

A = yA+ − yA− = ab + ac

2
− bc + (1)

2
= 1

2
[ab + ac − bc − (1)]

B = yB+ − yB− = ab + bc

2
− ac + (1)

2
= 1

2
[ab + bc − ac − (1)]

A = yC+ − yC− = ac + bc

2
− ab + (1)

2
= 1

2
[−ab + ac + bc − (1)]

AB = y(AB)+ − y(AB)− = ab + (1)

2
− ac + bc

2
= 1

2
[ab − ac − bc + (1)]

BC = y(BC)+ − y(BC)− = bc + (1)

2
− ab + ac

2
= 1

2
[−ab − ac + bc + (1)]
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AC = y(AC)+ − y(AC)− = ac + (1)

2
− ab + bc

2
= 1

2
[−ab − bc + ac + (1)]

Here, the effects of A, B, and C, respectively, are the same as the effects of −BC,
−AC, and −AB. So, A and -BC are aliases, B and −AC are aliases, and C and −AB
are aliases. As mentioned earlier, this can be found out in another way.

A = A.I = A.(−ABC) = −A.ABC = −(A2)BC = −I .BC = −BC

B = B.I = B.(−ABC) = −B.ABC = −A(B2)C = −A.I .C = −AC

C = C.I = C.(−ABC) = −C.(ABC) = −AB(C2) = −AB.I = −AB

The linear combination of observations used to estimate the main effects of A, B, and
C can be written as follows.

l
′
A = [ab + ac − bc − (1)] = A − BC

l
′
B = [ab + bc − ac − (1)] = B − AC

l
′
C = [−ab + ac + bc − (1)] = C − AB

It is then possible to express the de-aliased estimates of main and interaction effects
as follows.

1

2
(lA + l

′
A) = 1

2
(A + BC + A − BC) = A

1

2
(lA − l

′
A) = 1

2
(A + BC − A + BC) = BC

1

2
(lB + l

′
B) = 1

2
(B + AC + B − AC) = B

1

2
(lB − l

′
B) = 1

2
(B + AC − B + AC) = AC

1

2
(lC + l

′
C) = 1

2
(C + AB + C − AB) = C

1

2
(lC − l

′
C) = 1

2
(C + AB − C + AB) = AB

As shown, by combining a sequence of two fractional factorial designs we can isolate
both the main effects and the two-factor interactions.

8.7.5 A Practical Example of 23−1 Factorial Design

A 23−1 factorial experiment is carried out to investigate the effects of three factors,
namely furnace temperature (A), heating time (B), and transfer time (C) on the
surface finish of castings produced in a melting furnace. Each factor is kept at two
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Table 8.24 Experimental results of metal furnace experiment

Run A B C Treatment
combinations

Response

1 − − − (1) 40

2 + + − ab 55

3 + − + ac 45

4 − + + bc 65

levels, namely low (−) and high (+). The results of experiment are displayed in
Table8.24.

In this design, the defining relation is I = −ABC and the aliases are

A = −BC, B = −AC, C = −AB.

Thus, the three main effects (A,B,C) account for the three degrees of freedom for
the design. Let us now calculate the main effects of A, B, and C as follows.

A = 1

2
[ab + ac − bc − (1)] = −5

2
= −2.5

B = 1

2
[ab + bc − ac − (1)] = 35

2
= 17.5

C = 1

2
[−ab + ac + bc − (1)] = 15

2
= 7.5.

The contrasts are calculated as follows

ContrastA = [ab + ac − bc − (1)] = −5

ContrastB = [ab + bc − ac − (1)] = 35

ContrastC = [−ab + ac + bc − (1)] = 15.

The sum of squares is calculated as follows

SSA = (ContrastA)2

4
= (−5)2

4
= 6.25

SSB = (ContrastB)2

4
= (35)2

4
= 306.25

SSC = (ContrastC)2

4
= (15)2

4
= 56.25.

Table8.25 presents the contribution of factor effects in this experiment. It can be seen
that the factor A contributes only 1.7% of total variation in the data. It is therefore
considered to be nonimportant. The analysis of variance is shown in Table8.26.
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Table 8.25 Factor contributions for metal furnace experiment

Model term Effect Sum of squares Percent contribution

A −2.5 6.25 1.70

B 17.5 306.25 83.05

C 7.5 56.25 15.25

Total 368.75 100.00

Table 8.26 ANOVA table for metal furnace experiment

Source of
variation

Sum of squares Degree of
freedom

Mean square F0-value

B 306.25 1 306.25 49

C 56.25 1 56.25 9

Error 6.25 1 6.25

Total 368.75 3

If the level of significance is taken as 0.05, then F0.05,1,1 = 161.4 (TableA.11),
which is higher than the calculated F0-values (49 and 9) for factor B and factor C,
respectively. It is therefore concluded that none of the three factors are statistically
significant.

8.7.6 A Practical Example of 24−1 Factorial Design

A 24−1 factorial experiment is carried out to investigate the removal of color from
industrial effluent by an electrochemical process. Four factors, each at two levels,
are chosen as shown in Table8.27.

The percentage color removal is taken as response.Here, I = ABCD is the defining
relation for this design. The results of experiment are displayed in Table8.28.

In this design, the aliases are

A = BCD, B = ACD, C = ABD, D = ABC,AB = CD, AC = BD, AD = BC

Table 8.27 Factor and levels for color removal experiment

Factor Low level (−) High level (+)

Current density, mA/cm2(A) 14.285 42.857

Dilution, %(B) 10 30

Time of electrolysis, h (C) 2 5

pH (D) 4 9
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Table 8.28 Experimental results

Run A B C D = ABC Treatment
combina-
tions

Response

1 − − − − −1 78.265

2 + − − + ad 84.325

3 − + − + bd 72.235

4 + + − − ab 76.857

5 − − + + cd 98.25

6 + − + − ac 93.265

7 − + + − bc 91.235

8 + + + + abcd 97.356

Thus, the four main effects (A,B,C,D) and three two-factor interactions
(AB,AC,AD) account for the seven degrees of freedom for the design.

The main effects are calculated as follows.

A = yA+ − yA− = ad + ab + ac + abcd

4
− (1) + bd + cd + bc

4
= 87.951 − 84.996 = 2.955

B = yB+ − yB− = ab + bd + bc + abcd

4
− (1) + ad + cd + ac

4
= 84.421 − 88.526 = −4.105

C = yC+ − yC− = cd + ac + bc + abcd

4
− (1) + ad + bd + ab

4
= 95.027 − 77.921 = 17.106

C = yC+ − yC− = ad + bd + cd + abcd

4
− (1) + ab + ac + bc

4
= 88.042 − 84.906 = 3.136.

It can be seen that the main effect of B is negative, indicating that if the level of B
goes from higher to lower, the response increases. The othermain effects are positive,
indicating that the response decreases if the level of factors A,C, andD changes from
higher to lower one. Factor C plays the most important role in deciding the response,
followed by B, D, and A.

The interaction effects are calculated as follows.

AB = y(AB)+ − y(AB)− = (1) + ab + cd + abcd

4
− ad + bd + ac + bc

4
= 87.682 − 85.265 = 2.417

AC = y(AC)+ − y(AC)− = (1) + bd + ac + abcd

4
− ad + ab + cd + bc

4
= 85.280 − 87.667 = −2.387

AD = y(AD)+ − y(AD)− = (1) + ad + bc + abcd

4
− bd + ab + cd + ac

4
= 87.795 − 85.152 = 2.643.

It can be seen that the interaction effect of AC is negative, indicating that if the level
ofAC goes from higher to lower, the response increases. The other interaction effects
are positive, indicating that the response decreases if the level of interaction of AB
and AD changes from higher to lower one.

The sum of squares is calculated as follows.
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Table 8.29 Contribution of factor effects for color removal experiment

Model term Effect Sum of squares Percent contribution

A 2.955 17.464 2.52

B −4.105 33.703 4.86

C 17.106 585.23 84.43

D 3.136 19.669 2.84

AB 2.417 11.684 1.69

AC −2.387 11.396 1.64

BC 2.643 13.972 2.02

Total 693.118 100

SSA = (ContrastA)2

8
= (11.82)2

8
= 17.464

SSB = (ContrastB)2

8
= (−16.42)2

8
= 33.703

SSC = (ContrastC)2

8
= (68.424)2

8
= 585.230

SSD = (ContrastD)2

8
= (12.544)2

8
= 19.669

SSAB = (ContrastAB)2

8
= (9.668)2

8
= 11.684

SSAC = (ContrastAC)2

8
= (−9.548)2

8
= 11.396

SSAD = (ContrastAD)2

8
= (10.572)2

8
= 13.972

The total sum of squares is calculated as follows.

SSTotal = 60514.448 − 691.7882

8
= 693.118

Table8.29 presents the contribution of factor effects in this experiment. It can be seen
that the factor C alone contributes 84.43% of total variation present in the response,
whereas all other factors and their interactions contribute only 15.57%. It is therefore
concluded that only factorC is important. The resulting analysis of variance is shown
in Table8.30. If the level of significance is taken as 0.05, then F0.05,1,6 = 5.99, which
is less than the calculated F0-value (32.55) for factor C. It is therefore concluded
that the effect of time of electrolysis on the percentage color removal is statistically
significant.
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Table 8.30 ANOVA table for color removal experiment

Source of
variation

Sum of squares Degree of
freedom

Mean square F0

C 585.230 1 585.230 32.55

Error 107.888 6 17.981

Total 693.118 7

8.7.7 Design Resolution

The concept of design resolution is a useful way to catalogue fractional factorial
designs according to the alias patterns they produce.
Resolution I Design: In this design, an experiment of exactly one run involves only
one level of a factor. The 21−1 with I = A is a resolution I design. This is not a useful
design. We usually employ a Roman numeral subscript to indicate design resolution,
and this one-half fraction is a 21−1

I design.
Resolution II Design: In this design, the main effects are aliased with other main
effects. The 22−1 with I = AB is a resolution II design. This is also not a useful
design. This is designated as 22−1

II design.
Resolution III Design: In this design, no main effects are aliased with any other
main effect, but main effects are aliased with two-factor interactions and some two-
factor interactions may be aliased with each other. The 23−1 design with I = ABC is
a resolution III design. This is designated as 23−1

III design.
Resolution IVDesign: In this design, nomain effects are aliasedwith any othermain
effect or two-factor interactions, but two-factor interactions are aliased with each
other. The 24−1 design with I = ABCD is a resolution IV design. This is designated
as 24−1

IV design.
ResolutionVDesign: In this design, nomain effect or two-factor effect is aliasedwith
any other main effect or two-factor interaction, but two-factor interactions are aliased
with three-factor interactions. The 25−1 design with I = ABCDE is a resolution V
design. This is designated as 25−1

V design.
Resolution VI Design: In this design, no two-factor interactions are aliased with
three-factor interactions. The 26−1 design with I = ABCDEF is a resolution VI
design. This is designated as 26−1

VI design.
Note that resolution III and IV designs are particularly suitable in factor screening

experiments. Resolution IV design provides good information aboutmain effects and
will provide some information about all two-factor interactions.
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Problems

8.1 Cauliflowers were grown in a greenhouse under treatments consisting of four
types of soils and three types of fertilizers. In order to examine the effects of soil and
fertilizer, a factorial experiment was carried out. The results of experiments in terms
of the yield (kg) of cauliflowers are shown in Table8.31.

Analyze the data using α = 0.05.

8.2 In order to investigate the effects of type of resin, distance between blade and
anvil, and weight fraction of nonvolatile content in a lacquer on the thickness of
lacquer film on a substrate, the experiment shown in Table8.32 was carried out.

Analyze the data using α = 0.05.

8.3 A 22 factorial experiment was conducted to study the effects of temperature
(25 and 65 ◦C) and catalyst concentration (0.5 and 1.5%) on transesterification of
vegetable oil to methanol. The results are shown in Table8.33.

Table 8.31 Data for Problem8.1

Type of soil Type of fertilizer

X Y Z

A 6.3 7.5 8.6

6.9 7.8 8.2

B 5.4 3.4 7.5

5.6 3.2 7.6

C 7.2 5.4 7.2

7.4 5.8 7.4

D 8.7 6.4 5.2

8.9 6.8 5.8

Table 8.32 Data for Problem8.2

Distance (mm) type of soil Type of resin

A B

Weight fraction Weight fraction

0.20 0.30 0.40 0.20 0.30 0.40

1 2.1 1.8 1.5 1.7 1.4 1.2

2.0 1.7 1.4 1.6 1.3 1.0

3 2.8 2.4 2.1 2.1 1.7 1.4

2.9 2.3 2.2 2.2 1.6 1.3

5 3.8 3.4 3.0 2.8 2.3 2.0

3.6 3.2 2.9 2.7 2.1 1.9
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Table 8.33 Data for Problem8.3

Run Temperature ◦C Concentration (%) Conversion (%)

1 25 0.5 85.6 86.4

2 65 0.5 98.6 97.6

3 25 1.5 99.5 99.9

4 65 1.5 100 100

Table 8.34 Data for Problem8.4

Run pH (−) Concentration (mM) Power density (mW/mm2)

1 5.8 25 464 460

2 7.4 25 306 282

3 5.8 150 405 370

4 7.4 150 407 380

(a) Display the geometrical view of the aforementioned design.
(b) Analyze the main and interaction effects of temperature and concentration on

conversion.
(c) Construct ANOVA for conversion. Which effects are statistically significant at

0.05 level of significance?
(d) Develop an appropriate regression model for conversion.

8.4 In order to study the effects of pH (5.8 and 7.4) and buffer concentration of
catholyte (25 and 150mM) on the power density of a fuel cell, the 22 factorial design
of experiment was carried out and results are shown in Table8.34.

(a) Display the geometrical view of the aforementioned design.
(b) Analyze the main and interaction effects of pH and concentration on power

density.
(c) Construct ANOVA for power density. Which effects are statistically significant

at 0.05 level of significance?
(d) Develop an appropriate regression model for power density.

8.5 An experiment was carried out to investigate the effects of ratio of PP and
LLDRE (X1) and concentration of red mud particles (X2) on the tensile strength (Y )
of red mud filled PP/LLDPE blended composites. The results of experiments are
shown in Table8.35.

(a) Display the geometrical view of the aforementioned design.
(b) Analyze the main and interaction effects of ratio of PP and LLDRE and concen-

tration of red mud particles on the tensile strength.
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Table 8.35 Data for Problem8.5

Run X1(−) X2(−) Y (MPa)

1 0.20 5 10.5 11

2 5 5 24.8 25.2

3 0.20 10 7.6 9.8

4 5 10 18.4 19.8

Table 8.36 Data for Problem8.6

Run pH Buffer Temperature Percentage of degraded 1.0 × 10−4 M NADH

1 6.8 Phosphate 25 6.2 9.3 7.2

2 7.8 Phosphate 25 2.4 5.3 3.9

3 6.8 Pipes 25 0 0.4 0

4 7.8 Pipes 25 0.8 0 0

5 6.8 Phosphate 30 13.0 13.4 12.1

6 7.8 Phosphate 30 8.1 9.4 8.7

7 6.8 Pipes 30 7.3 6.1 8.8

8 7.8 Pipes 30 3.0 1.8 0

(c) Construct ANOVA for tensile strength. Which effects are statistically significant
at 0.05 level of significance?

(d) Develop an appropriate regression model.

8.6 An article entitled “Study of NADH stability using ultraviolet-visible spec-
trophotometric analysis and factorial design” published by L. Rovar et al. in Ana-
lytical Biochemistry, 260, 50–55, 1998, reported on the effects of pH, buffer, and
temperature on percentage of degraded 1.0 × 10−4 M NADH. In the reported study,
two levels of pH (6.8 and 7.8), two buffer solutions (phosphate and pipes), and two
levels of temperature (25 and 30 ◦C) were taken. The results are given in Table8.36.

(a) Display the geometrical view of the aforementioned design.
(b) Analyze the main and interaction effects of pH, buffer, and temperature on per-

centage of degraded 1.0 10-4 M NADH.
(c) Construct ANOVA for percentage of degraded 1.0 10-4MNADH.Which effects

are statistically significant at 0.05 level of significance?

8.7 An article entitled “Designed experiments to stabilize blood glucose levels,”
published by R.E. Chapman and V. Roof in Quality Engineering, 12, 83–87, 1999,
reported on the effects of amount of juice intake before exercise (4oz or 8oz), amount
of exercise (10min or 20min), and delay between time of juice intake and beginning
of exercise (0min or 20min) on the blood glucose level of patients. The data are
shown in Table8.37.
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Table 8.37 Data for Problem8.7

Run Juice intake
(oz)

Exercise Delay Blood glucose mg/dL

1 4 10 0 78 65

2 8 10 0 101 105

3 4 20 0 96 71

4 8 20 0 107 145

5 4 10 20 128 123

6 8 10 20 112 147

7 4 20 20 111 79

8 8 20 20 83 103

Table 8.38 Data for Problem8.8

Variable Unit Low level (−) High level (+)

Spindle speed (S) rev/s 17 50

Feed rate (F) Mm/s 0.09 0.15

Ultrasonic power (P) % 35 50

(e) Display the geometrical view of the aforementioned design for blood glucose
level.

(f) Analyze the main and interaction effects of amount of juice intake, amount
of exercise, and delay between juice intake and exercise in determining blood
glucose level.

(g) Construct ANOVA for blood glucose level. Which effects are statistically sig-
nificant at 0.05 level of significance?

(h) Develop an appropriate regression model for blood glucose level.

8.8 An article entitled “Rotary ultrasonic machining of ceramic matrix composites:
feasibility study and designed experiments,” published by Z.C. Li et al. in Interna-
tional Journal of Machine Tools & Manufacture, 45, 1402–1411, 2005, described
the use of a full factorial design to study the effects of rotary ultrasonic machining
on the cutting force, material removal rate, and hole quality (in terms of chipping
dimensions). The process variables and their levels were taken and are shown in
Table8.38.

The results of experiments are stated in Table8.39.

(a) Display the geometrical views of the design for cutting force, material removal
rate, chipping thickness, and chipping size.

(b) Analyze the main and interaction effects of spindle speed, feed rate, and ultra-
sonic power in determining cutting force, material removal rate, chipping thick-
ness, and chipping size.
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(c) Construct ANOVA for cutting force, material removal rate, chipping thickness,
and chipping size. Which effects are statistically significant at 0.05 level of
significance?

(d) Develop appropriate regression models for cutting force, material removal rate,
chipping thickness, and chipping size.

8.9 Consider the experiment described in Problem8.6. Analyze the data usingYates’
algorithm. Check if the results obtained are same with those obtained in Problem8.6.

8.10 Consider the experiment described in Problem8.7. Analyze the data using
Yates’ algorithm. Check if the results obtained are same with those obtained in
Problem8.7.

8.11 Consider the experiment described in Problem8.1. Analyze the experiment
assuming that each replicate represents a block and draw conclusions.

8.12 Consider the experiment described in Problem8.4. Analyze the experiment
assuming that each replicate represents a block and draw conclusions.

8.13 Consider the data from the first replicate of Problem8.6. Suppose that these
experiments could not all be run using the same batch of material. Construct a design
with two blocks of four observations each with SFP confounded. Analyze the data.

8.14 Consider the data from the first replicate of Problem8.4. Suppose that these
experiments could not all be run using the same batch of material. Suggest a reason-
able confounding scheme and analyze the data.

8.15 An article entitled “Screening of factors influencing Cu(II) extraction by soy-
bean oil-based organic solvents using fractional factorial design” published by S.H.
Chang et al. in Journal of EnvironmentManagement 92, 2580–2585, 2011, described
a fractional factorial experiment to study the effect of Cu (II) extraction process
on extraction efficiency (η). The process variables and their levels are given in
Table8.40.

The results of experiments are stated in Table8.41.

Table 8.40 Data for Problem8.15

Variable Unit Low level (−) High level (+)

Time (A) min 3 6

Concentration of
D2EHPA (B)

mM 50 100

O:A ratio (C) – 1.0 1.5

Concentration of
Na2SO4 (D)

mM 200 250

pH (E) – 4.0 4.5

Concentration of TBP
(F)

30 60
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Table 8.41 Results of Problem8.15

Run A B C D E F η(%)

1 6 100 1 250 4 60 87.65

2 3 100 1.5 200 4 30 95.27

3 3 100 1 200 4 60 95.48

4 6 100 1 200 4 30 92.08

5 3 100 1.5 200 4.5 60 99.32

6 6 50 1.5 200 4 30 68

7 6 50 1.5 200 4.5 60 96.58

8 6 50 1 200 4 60 72.07

9 6 100 1 200 4.5 60 98.53

10 6 50 1 250 4 30 79.84

11 3 100 1 250 4.5 30 98.95

12 6 100 1 250 4.5 30 98.49

13 6 50 1 200 4.5 30 96.38

14 3 50 1 200 4 30 68.33

15 3 100 1.5 250 4 60 95.17

16 6 100 1.5 200 4.5 30 98.96

17 3 50 1.5 250 4 30 78.74

18 3 50 1 250 4.5 30 93.97

19 6 100 1.5 250 4.5 60 98.73

20 3 50 1 200 4.5 60 97.11

21 3 50 1.5 200 4.5 30 98.35

22 6 50 1.5 250 4 60 79.64

23 3 50 1.5 250 4.5 60 96.05

24 3 100 1 250 4.5 60 98.54

25 3 100 1 250 4 30 88.1

26 3 100 1.5 250 4.5 30 99.07

27 6 50 1.5 250 4.5 30 97.91

28 3 50 1.5 200 4 60 79.14

29 6 100 1.5 200 4 60 94.71

30 3 50 1 250 4 60 71.5

31 6 100 1.5 250 4 30 92.4

32 6 50 1 250 4.5 60 93.84
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Analyze the main and interaction effects of the five process factors, and calculate
percent contribution of them. Which effects are statistically significant at 0.05 level
of significance? Construct ANOVA for extraction efficiency.

Reference

Leaf GAV (1987) Practical Statistics for the Textile Industry, Part II. The Textile Institute, Manch-
ester, p 60



Chapter 9
Response Surface Methodology

9.1 Introduction

Response surface methodology or in short RSM is a collection of mathematical and
statistical tools and techniques that are useful in developing, understanding, and
optimizing processes and products. Using this methodology, the responses that are
influenced by several variables can be modeled, analyzed, and optimized.

In most of the problems related to RSM, the form of relationship between the
response (dependent) and factor (independent) variables is not known. The first step
in RSM is therefore to find a suitable relationship between the response and factor
variables. For this, an appropriate design of experiments is conducted and the exper-
imental data are used to develop response surface models. Afterward, the response
surface is analyzed to locate a direction that goes toward the general vicinity of the
optimum. Once the optimum region is found, a more elaborate model—often fol-
lowed by a new set of designed experiments carried out in the optimum region—is
developed and analyzed to locate the optimum. This is why RSM is known as a
sequential procedure. This is illustrated in Fig. 9.1 (Montgomery 2007). As stated by
Montgomery (2007), the response surface methodology can be thought as “climbing
a hill” where the top of the hill represents the point of maximum response, and if the
true optimum is a point of minimum response then we may think of “descending into
a valley.” The ultimate objective of RSM is to optimize a process or product. There
are a good number of resources available on response surface methodology. A large
number of research articles exist on the development and application of response
surface methodology for optimizing processes and products. In addition, there are
quite a few textbooks available where a detailed discussion on RSM is presented
by authors like Myers et al. (2009), Box et al. (2005), Panneerselvam (2012), to
name a few. The interested readers can use these valuable resources to enhance their
knowledge and skills on RSM.

© Springer Nature Singapore Pte Ltd. 2018
D. Selvamuthu and D. Das, Introduction to Statistical Methods,
Design of Experiments and Statistical Quality Control,
https://doi.org/10.1007/978-981-13-1736-1_9

319
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Fig. 9.1 Illustration of
sequential nature of RSM

9.2 Response Surface Models

In response surface methodology, the responses are generally modeled by either a
first-order model or a second-order model. Suppose there are n number of inde-
pendent variables x1, x2, . . . , xn so that the first-order model can be expressed as
follows

y = β0 +
n∑

i=1

βi xi + ε

where y denotes the response, βs represent the coefficients, and ε refers to the error.
As this model contains only the main effects, it is sometimes called main effects
model. In this model, the fitted response surface looks like a plane. If there exists an
interaction between the independent variables, then it can be added in the first-order
model as

y = β0 +
n∑

i=1

βi xi +
∑

i< j

∑
βi j xi x j + ε.

This is called a first-order model with interaction. Because of the interaction term
present in themodel, the resulting response surface looks curved.Often, the curvature
in the true response surface is so strong that the first-ordermodel evenwith interaction
term turns out to be inadequate. In such a case, a second-order model of the following
form is found to fit better.
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y = β0 +
n∑

i=1

βi xi +
n∑

i=1

βi j x
2
i +

∑

i< j

∑
βi j xi x j + ε.

It is therefore necessary to check the adequacy of a fitted model. As in the case of
regression analysis, this is checked by coefficient of determination, residual analysis,
and lack of fit test. The response surface models are developed using multiple linear
regression analysis.

9.3 Multiple Linear Regression

Often, we would like to model the effect of more than one independent (regressor)
variable on a dependent (response) variable. Then, we talk about multiple regression.
In the following, some examples of multiple regression are given.

Let us consider the first-order response surface model involving two factors with-
out any interaction. This is written below.

y = β0 + β1x1 + β2x2 + ε.

Let us now consider the first-order response surfacemodel involving two factors with
interaction. This is stated here under

y = β0 + β1x1 + β2x2 + β3x1x2 + ε.

This expression can also be written as

y = β0 + β1x1 + β2x2 + β3x3 + ε

where x3 = x1x2. Further, we consider the second-order response surface model
involving two factors, as stated below

y = β0 + β1x1 + β2x2 + β3x
2
1 + β4x

2
2 + β5x1x2 + ε.

This can also be expressed as

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + ε

where x3 = x21 , x4 = x22 , x5 = x1x2. In this way, the first as well as the second-order
response surfacemodels can be expressed as amultiple linear equation. The statistical
technique that explores such a mathematical relationship between dependent and
independent variables is known as multiple linear regression analysis.
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9.3.1 A Generalized Model

Let us now consider a generalized model as shown below.

yi = β0 + β1xi1 + β2xi2 + · · · + βk xik + εi , i = 1, 2, . . . , n.

This model can be written in short as

y = xβ + ε

where

y =

⎛

⎜⎜⎜⎝

y1
y2
...

yn

⎞

⎟⎟⎟⎠ , β =

⎛

⎜⎜⎜⎝

β0

β1
...

βk

⎞

⎟⎟⎟⎠ , ε =

⎛

⎜⎜⎜⎝

ε1
ε2
...

εn

⎞

⎟⎟⎟⎠ , x =

⎛

⎜⎜⎜⎝

1 x11 x12 . . . x1k
1 x21 x22 . . . x2k
...

...
...

...

1 xn1 xn2 . . . xnk

⎞

⎟⎟⎟⎠

9.3.2 Estimation of Coefficients: Least Square Method

The least square method for estimating the coefficients of simple linear regression
is already discussed in Chap.7. The same method is used here to estimate the coef-
ficients of multiple linear regression.

The total sum of square errors is given by

L =
n∑

i=1

ε2i = ε′ε = (y − xβ)′(y − xβ).

Taking partial derivative with respect to β, we have

∂L

∂β

∣∣∣∣
β̂

= 0,

∂

∂β

[
(y − xβ)′(y − xβ)

] ∣∣
β̂

= 0,

we get
β̂ = (x′x)−1x′y.

Hence, the fitted model is y = xβ̂ and residual is ε = y − y′.
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Table 9.1 Data for strength of parachute joints

y x1 x2

23 5 4

35 5 6

51 5 8

42 10 4

61 10 6

76 10 8

Example 9.1 Let us fit a multiple linear regression model

yi = β0 + β1xi1 + β2xi2 + εi

to the data shown in Table 9.1. Here y denotes the strength (kN) of joint in a parachute
webbing, x1 denotes length (mm) of overlap in the joint, and x2 denotes stitch density
(no. of stitches per 25mm).

Solution:
Following the above-mentioned procedure, we have

x′x =
⎛

⎝
1 1 1 1 1 1
5 5 5 10 10 10
4 6 8 4 6 8

⎞

⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

1 5 4
1 5 6
1 5 8
1 10 4
1 10 6
1 10 8

⎞

⎟⎟⎟⎟⎟⎟⎠
=
⎛

⎝
6 45 36
45 375 270
36 270 232

⎞

⎠

(x′x)−1 =
⎛

⎝
3.9167 −0.2000 −0.3750

−0.2000 0.0267 0
−0.3750 0 0.0625

⎞

⎠ ,

x′y =
⎛

⎝
1 1 1 1 1 1
5 5 5 10 10 10
4 6 8 4 6 8

⎞

⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

23
35
51
42
61
76

⎞

⎟⎟⎟⎟⎟⎟⎠
=
⎛

⎝
238
2335
1852

⎞

⎠ .

This gives

β = (x′x)−1x′y =
⎛

⎝
−33.50
4.6667
7.7500

⎞

⎠ .
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Hence, the fitted model is

ŷ = −33.50 + 4.6667x1 + 7.7500x2,

and the residual is

⎛

⎜⎜⎜⎜⎜⎜⎝

ε1
ε2
ε3
ε4
ε5
ε6

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

23
35
51
42
61
76

⎞

⎟⎟⎟⎟⎟⎟⎠
−

⎛

⎜⎜⎜⎜⎜⎜⎝

20.8335
36.3335
51.8335
44.1670
59.6670
75.1670

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

2.1665
−1.3335
−0.8335
−2.1670
1.3330
0.8330

⎞

⎟⎟⎟⎟⎟⎟⎠
.

9.3.3 Estimation of Variance σ 2 of Error Term

We know that the sum of squares of error is

SSE =
n∑

i=1

ε2i =
n∑

i=1

(Yi − Ŷi )
2.

9.3.4 Point Estimate of Coefficients

The point estimate of coefficients is obtained as follows. It is known that the expected
value of SSE is

E(SSE ) = (n − p)σ 2.

Then, an unbiased estimator of σ 2 is σ̂ 2 = SSE
n−p . Referring to the previous example,

we have

σ̂ 2 = 14.33

6 − 3
= 4.7778.

E(β̂) = E
[
(x

′
x)−1x

′
y
]

= E
[
(x

′
x)−1x

′
(xβ + ε)

]

= E
[
(x

′
x)−1x

′
xβ + (x

′
x)−1x

′
ε
]

= β

Thus β̂ is an unbiased estimator of β. It is known that

Cov(β̂) = σ 2(x
′
x)−1 = σ 2C
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where C = (x
′
x)−1 is a symmetric matrix. Then,

Cov(β̂i β̂ j ) = σ 2Ci j , i �= j.

Hence,
V (β̂ j ) = σ 2C j j , j = 0, 1, 2.

Thus, the standard error of β̂ j equals to
√

σ̂ 2C j j . Using the procedure mentioned
above, the standard error of the coefficients β0, β1, and β2 in Example 10.1 can be
determined as 4.3259, 0.3572, and 0.5465 respectively.

9.3.5 Hypothesis Test for Significance of Regression

Suppose we wish to test the hypothesis that the slope equals to a constant, say β1,0.
Then, our hypotheses are

H0 : β1 = β1,0 against H1 : β1 �= β1,0.

Let us assume that the errors εi are normally and independently distributedwithmean
0 and variance σ 2. Then, the observations yi are also normally and independently
distributed with mean β0 + β1xi and variance σ 2. Since β̂1 is a linear combination of
independent normal random variables, then β̂1 is normally distributed with mean β1

and variance σ 2

Sxx
. In addition, (n−2)σ̂ 2

σ 2 is a chi-square distribution with n − 2 degree

of freedom, and β̂1 is independent of σ̂ 2. Then, the statistic t0 = β̂1−β1,0√
σ 2/Sxx

follows

t-distribution with n-2 degree of freedom. How can we obtain SSR and SSE ? We
know that SST = SSR + SSE

SST =
n∑

i=1

y2i −

( n∑

i=1

y2i

)2

n

SSE =
n∑

i=1

ε2i

=
n∑

i=1

(yi − ŷi )
2

Hence,
SSR = SST − SSE .
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Referring to previous example, we obtain

SST = 192 SSE = 14.3333 SSR = 1777.6667

F0 = SSR/k

SSE/(n − p)
= 1777.6667/2

14.3333/3
= 186.0353

Since the computed value of F0 is higher than F0.05,2,3 = 19.2 (Table A.11), we
reject H and conclude that the joint strength is linearly related to either the length of
overlap in the joint or the stitch density or both. However, this does not imply that
the relationship found is an appropriate model for predicting the joint strength as a
function of length of overlap in the joint and stitch density. Further tests of model
adequacy are required before we can be comfortable in using this model in practice.

9.3.6 Hypothesis Test on Individual Regression Coefficient

Sometimes we may like to determine the potential value of each of the regression
coefficients with a view to know if the model would be more effective with the
inclusion of additional variables or deletion of one of the regressor variable. Then,
the hypotheses are

H0 : β j = 0 against H1 : β j �= 0.

The test statistics is given by

|t0| =
∣∣∣∣

β̂ j√
σ
2C j j

∣∣∣∣

We reject H0 if the computed value of t0 is greater than the table value of t α
2 ,n−p.

Illustration: Hypothesis Test on β0: The hypotheses are

H0 : β0 = 0 against H1 : β0 �= 0

The test statistics is

|t0| =
∣∣∣∣

β̂0√
σ 2C00

∣∣∣∣ =
∣∣∣∣

−33.5000√
4.7778 × 3.9167

∣∣∣∣ = 7.7441

Since the computed value of t0 is greater than the table value of t0.025,3 = 3.1824
(Table A.10), we reject the hypothesis that H0 : β0 = 0

Illustration: Hypothesis Test on β1: The hypotheses are

H0 : β1 = 0 against H1 : β1 �= 0
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The test statistic is

|t0| =
∣∣∣∣

β̂1√
σ 2C11

∣∣∣∣ =
∣∣∣∣

4.6667√
4.7778 × 0.0267

∣∣∣∣ = 13.0647

Since the computed value of t0 is greater than the table value of t0.025,3 = 3.1824
(Table A.10), we reject the hypothesis that H0 : β1 = 0. This implies that the length
of overlap in the joint contributes significantly to the joint strength.

Illustration: Hypothesis Test on β2: The hypotheses are

H0 : β2 = 0 against H1 : β2 �= 0

The test statistic is

|t0| =
∣∣∣∣

β̂2√
σ 2C22

∣∣∣∣ =
∣∣∣∣

7.7500√
4.7778 × 0.0625

∣∣∣∣ = 25.9545

Since the computed value of t0 is greater than the table value of t0.025,3 = 3.1824
(Table A.10), we reject the hypothesis that H0 : β2 = 0. This implies that the stitch
density contributes significantly to the joint strength.

9.3.7 Interval Estimates of Regression Coefficients

If the errors εi are normally and independently distributed with mean 0 and variance
σ 2. Therefore, the observations {yi } are normally and independently distributed with
mean

β0 +
k∑

j=1

β j xi j and variance σ 2.

Since the least square estimator β̂ is a linear combination of the observations, it
follows that β̂ is normally distributed with mean β and covariance σ 2(x

′
x)−1. The

each of the statistics

T = β̂ j − β j√
σ̂ 2C j j

, j = 0, 1, . . . , k

follows t-distribution with n − p degree of freedom. Then, 100(1 − α)%confidence
interval for the regression coefficient β j , j = 0, 1, 2, . . . , k is

β̂ j − t α
2 ,n−p

√
σ̂ 2C j j ≤ β j ≤ β̂ j + t α

2 ,n−p

√
σ̂ 2C j j .
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Referring to the previous example, we have confidence intervals for coefficients as

−47.2563 ≤ β0 ≤ −19.7437,

3.5309 ≤ β1 ≤ 5.8025,

6.0123 ≤ β2 ≤ 9.4877.

9.3.8 Point Estimation of Mean

Let us estimate the mean of y at a particular point, say x01, x02, . . . , x0k The mean
response at this point is μy|x0 = E(y|x0) = x

′
0β, where

x0 =

⎛

⎜⎜⎜⎜⎜⎝

1
x01
x02
...

x0k

⎞

⎟⎟⎟⎟⎟⎠

This estimator is unbiased, since

E(x
′
0β) = x

′
0β = E(y|x0) = μy|x0

The variance of μ̂y|x0 is
V (μ̂y|x0) = σ 2x

′
0(x

′
x)−1x0.

A 100(1 − α)% confidence interval on the mean response at the point x01, x02, . . . ,
x0k is

μ̂y|x0 − t α
2 ,n−p

√
σ 2x′

0(x
′x)−1x0 ≤ μy|x0 ≤ μ̂y|x0 + t α

2 ,n−p

√
σ 2x′

0(x
′x)−1x0

We would like to construct a 95% confidence interval on the mean strength of joint
for a parachute webbing with 5mm length of overlap of joint and 8 stitches per
25mm.

x0 =
⎛

⎝
1
5
8

⎞

⎠
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μ̂y|x0 = x
′
0β̂ = (

1 5 8
)
⎛

⎝
−33.50
4.6667
7.7500

⎞

⎠ .

The variance of μ̂y|x0 is estimated by

σ 2x
′
0(x

′
x)−1x0 = 4.7778

(
1 5 8

)
⎛

⎝
3.9167 −0.2000 −0.3750

−0.2000 0.0267 0
−0.3750 0 0.0625

⎞

⎠

⎛

⎝
1
5
8

⎞

⎠ = 2.7912.

Then, 46.5207 ≤ μy|x0 ≤ 57.1463

Prediction of New Observation

Let y0 be the future observation at x = x0. Let the estimator of y0 be ŷ0; ŷ0 = x
′
0β̂,

where x
′
0= [1, x01, x02, . . . , x0k].

A 100(1 − α)% prediction interval for this future observation is

ŷ0 − t α
2 ,n−p

√
σ 2[1 + x′

0(x
′x)−1x0] ≤ y0 ≤ ŷ0 + t α

2 ,n−p

√
σ 2[1 + x′

0(x
′x)−1x0].

Wewould like to construct a 95% prediction interval on the mean strength of joint for
a parachute webbing with 5mm length of overlap of joint and 5 stitches per 25mm.

x0 =
⎛

⎝
1
5
5

⎞

⎠ , ŷ0 = x
′
0β̂ = (

1 5 5
)
⎛

⎝
−33.5000
4.6667
7.7500

⎞

⎠ = 28.5335.

The variance of μ̂y|x0 is estimated by

σ 2x
′
0(x

′
x)−1x0 = 4.777

(
1 5 5

)
⎛

⎝
3.9167 −0.2000 −0.3750

−0.2000 0.0267 0
−0.3750 0 0.0625

⎞

⎠

⎛

⎝
1
5
5

⎞

⎠ = 1.8954.

Then, 20.3291 ≤ y0 ≤ 36.7379

9.3.9 Adequacy of Regression Model

The adequacy of a multiple linear regression model is checked by residual analysis
and coefficient of multiple determination.

Residual Analysis: Residuals from a regression model are

εi = yi − ŷi ; i = 1, 2, . . . , n,
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Table 9.2 Results of transesterification experiment

Temperature (◦C) Concentration (%) Conversion (%)

25 0.5 86

65 0.5 98.1

25 1.5 99.7

65 1.5 100

45 1 97.7

45 1 97.8

45 1 97.6

45 1 98

45 1.71 100

73.3 1 99.7

16.7 1 96.6

45 0.29 89

where yi is the actual observation and ŷi is the corresponding fitted from the regres-
sion model. Model is considered to be adequate if the errors are approximately
normally distributed with zero mean and constant variance. Plot residuals against ŷi
and x , separately and check for adequacy.

Coefficient of Multiple Determination This is denoted by R2 and defined by

R2 = SSR
SST

= 1 − SSE
SST

0 ≤ R2 ≤ 1

For the strength of joint data, we find R2 = 0.9920. Thus, this model accounts for
about 99% of the variability in joint strength response. The R2 statistic is somewhat
problematic as a measure of the quality of the fit for a multiple regression model
because it always increases with the inclusion of additional variable to a model. So,
many regression users prefer to use an adjusted R2 statistic

R2
ad j = 1 − SSE/(n − p)

SST /(n − 1)
R2
ad j = 0.9867.

Example 9.2 Vicente et al. (1998) made an attempt to study transesterification of
sunflower oil with methanol. The effects of operating temperature and catalyst con-
centration on the conversion of methanol were examined. The experimental results
are reported in Table 9.2. Suppose the experimenter fitted the experimental data with
a first-order model and obtained the following expression

ŷ[%] = 84.17 + 0.1049T[◦C] + 7.7891C[%].
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Fig. 9.2 Response surface
and contour plots for
first-order model for
transesterification of oil

Fig. 9.3 Response surface
and contour plots for
first-order model with
interaction for
transesterification of oil

The standardmultiple linear regression techniquewasused.The three-dimensional
response surface plot and the two-dimensional contour plot of this model are shown
together in Fig. 9.2. As shown, the response surface plot looked like a plane and the
contour lines of constant responses were found to be straight. This model, however,
gave a poor coefficient of determination (adjusted R2 = 0.6466).

Then the experimenter fitted the experimental data with a first-order model with
interaction term and obtained the following expression

ŷ[%] = 70.90 + 0.40T[◦C] + 21.06C[%] − 0.295T[◦C]C[%]

Here, the last term indicates the interaction between temperature and concentra-
tion. Figure 9.3 displays the three-dimensional response surface plot and the two-
dimensional contour plot. It can be seen that the contour lines of constant responses
were no more straight. This was due to the presence of the interaction term in
the model. This model yielded a higher coefficient of determination (adjusted
R2 = 0.8197).
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Fig. 9.4 Response surface
and contour plots for
second-order model for
transesterification of oil

Further, the experimenter fitted the experimental data with a second-order model
and obtained the following expression

ŷ[%] = 65.54 + 0.3788T[◦C] + 34.91C[%] − 0.295T[◦C]C[%] + 0.0002T 2[◦C] − 6.925C2[%]

Here, the last two are the quadratic terms. The three-dimensional response surface
plot and the two-dimensional contour plot of this model are displayed in Fig. 9.4. It
can be seen that the contour lines of constant responseswere, as expected, not straight.
This model yielded the highest coefficient of determination (adjusted R2 = 0.9301)
among all the models discussed here.

9.4 Analysis of First-Order Model

One of themost important objectives behind the use of response surfacemethodology
is to optimize the response. In general, the initial estimate of the optimum process
conditions is very far from the actual optimum ones. In such a situation, the experi-
menter wishes to move rapidly to the general vicinity of the optimum region. One of
the ways to do so is by following the method of steepest ascent (when maximization
is desired) or the method of steepest decent (when minimization is desired). In the
following, the principles of method of steepest ascent are given. They are similar
in case of steepest decent method. The method of steepest ascent is a procedure for
moving sequentially along the direction of maximum increase in the response. In the
case of first-order model shown below

ŷ = β̂0 +
n∑

i=1

β̂i xi

the contours of fitted response (ŷ) are parallel lines as shown in Fig. 9.5.
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Fig. 9.5 Illustration of
method of steepest ascent

The path of steepest ascent denotes the direction in which the fitted response
increases most rapidly. This direction is parallel to the normal to the fitted response
surface. In general, the path of steepest ascent follows a line which is passing through
the center of region of interest and normal to the fitted response surface. The steps
along the path of steepest ascent are thus proportional to the regression coefficients
β̂ of the first-order model. This leads to finding the operating conditions for new
experiments. Experiments are then conducted along the path of steepest ascent until
no further increase in the response is observed. Then, a new first-ordermodel is fitted,
and a new path of steepest ascent is determined. This procedure is continued, and the
experimenter eventually arrives in the vicinity of the optimum. This is usually indi-
cated by lack of fit of a first-order model. It is indicative that additional experiments
be performed to obtain a more precise estimate of the optimum.

The algorithm for the method of steepest ascent is described hereunder. Suppose
the first-order model, expressed in coded variables xi , is shown as

ŷ = β̂0 + β̂1x1 + β̂2x2 + · · · + β̂nxn.

Step 1: Consider x1 = x2 = · · · = xn = 0.

Step 2: Select the independent variable that has the highest absolute value of the
regression coefficient. Suppose x j is the independent variable that has the highest
absolute value of regression coefficient |β̂ j |. Choose a step size Δx j for x j .

Step 3: Find out the step size for the other variables as follows

Δxi = βi

β̂ j/Δx j

, i = 1, 2, . . . , n, i �= j.
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This results in most rapid movement (steepest ascent) toward larger response values.

Step 4: Convert the Δxi from coded variables to the natural variables.

Let us illustrate this with the help of an example.

Example 9.3 Consider the following first-order model as in Example 9.2

ŷ[%] = 84.17 + 0.1049T[◦C] + 7.7891C[%].

This equation is expressed in terms of natural variables of temperature (T ) and
concentration (C).We need to convert them fromnatural variables to coded variables.
This can be done by considering the following transformations.

xT[−] = T[◦C] − 1
2 (Tmax[◦C] + Tmax[◦C])

1
2 (Tmax[◦C] − Tmax[◦C])

= T[◦C] − 45

20

xC[−] = C[%] − 1
2 (Cmax[%] + Cmin[%])

1
2 (Cmax[%] − Cmin[%])

= C[%] − 1.0

0.5

The first-order model, expressed in terms of coded variables, is

ŷ[%] = 96.68 + 2.10xT [◦C] + 3.89xC[%] .

Then, the following steps are followed.
Step 1: Consider xT = xC = 0.
Step 2: As 3.89 > 2.10, it is considered that ΔxC = 1.0.
Step 3: The step size for temperature is ΔxT = 2.10

3.89/1.0 = 0.54.
Step 4: To convert the coded step sizes to the natural units of step sizes, the following
relationships are used.

ΔxT[−] = ΔT[◦C]
20

and ΔxC[−] = ΔC[%]
0.5

This results in
ΔT[◦C] = 20ΔxT[−] = 20 × 0.54 = 10.8

ΔC[%] = 0.5ΔxC[−] = 0.5 × 1.0 = 0.5

The new set of experiments are thus found as follows in Table 9.3. The experimenter
needs to perform the experiments and analyzes the responses.
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Table 9.3 New set of experiments for Example 10.2

Steps Coded variable Natural variables

Origin 0 0 45 1

Δ 0.54 1 10.8 0.5

Origin+Δ 0.54 1 55.8 1.5

Origin+2Δ 1.08 2 66.6 2

Origin+3Δ 1.62 3 77.4 2.5
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

9.5 Analysis of Second-Order Model

In general, when the experimenter has reached the vicinity of optimum region and
a first-order model is exhibiting a lack of fit, then the following second-order model
incorporating the curvature of the response is fitted.

ŷ = β0 +
n∑

i=1

βi xi +
n∑

i=1

βi j x
2
i +

∑

i< j

∑
βi j xi x j

In this section, we will make an analysis for the fitted second-order model.

9.5.1 Location of Stationary Point

Suppose we wish to find the levels of x1, x2, . . . , xn that optimize the fitted response.
This point, if it exists, can be found out as follows:

∂ ŷ

∂x1
= ∂ ŷ

∂x2
= · · · = ∂ ŷ

∂xn
= 0

This point, say x1,s, x2,s, . . . , xn,s is called stationary point. It can represent a point
of maximum response or a point of minimum response or a saddle point. These three
possibilities are displayed in Figs. 9.6a, b, 9.7.

It is possible to obtain a general solution for the location of stationary point. For
this, we need to write the second-order model in matrix notation as follows

ŷ = β̂0 + x′b + x′Bx
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Fig. 9.6 Response surface and contour plots displaying a maximum and a minimum

Fig. 9.7 Response surface
and contour plot displaying a
saddle point

where

x =

⎡

⎢⎢⎢⎣

x1
x2
...

xn

⎤

⎥⎥⎥⎦ , b =

⎡

⎢⎢⎢⎣

β̂1

β̂2
...

β̂n

⎤

⎥⎥⎥⎦ , B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

β̂11
β̂12

2 . . .
β̂1n

2

β̂22 . . .
β̂2n

2
. .

. .

. .

β̂nn

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

x is (n × 1) vector of independent variables, b is a (n × 1) vector of the first-order
regression coefficients, and B is (n × n) symmetric matrix whose main diagonal
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elements are the pure quadratic coefficients and the off-diagonal elements are one-
half of the mixed quadratic coefficients.

The derivative of ŷ with respect to the elements of the vector x equated to zero is

∂ ŷ

∂x
= b + 2Bx = 0.

The stationary point is the solution to the above equation, that is,

xS = −1

2
B−1b.

By substituting the expression of stationary point in the second-order model, the
predicted response at the stationary point is obtained as follows

ŷS = β̂0 + 1

2
x′
Sb.

9.5.2 Nature of Stationary Point

After determining the stationary point, it is necessary to know whether the station-
ary point represents the maximum or minimum response or a saddle point (min-
imax response). This is done by examining the contour plot of the fitted model,
particularly when the model consists of two or three independent variables. As the
number of variables increases, the construction and interpretation of the contour
plot becomes difficult. Then, a more formal analysis, called canonical analysis, is
used. A detailed description of the canonical analysis was given by Myers et al.
(2009) and Box et al. (2005). Using this analysis, the nature of response surface
(maximum/minimum/saddle point) can be characterized by solving the following
equation

|B − λI| = 0

The stationary point corresponds to a maximum, minimum, or minmax response
according as the values of λ1, λ2, . . . , λn are all negative, positive, or mixed in sign.
Let us illustrate this with the help of an example.

Example 9.4 Consider the following second-order model as stated in Example 9.2.

ŷ[%] = 65.54 + 0.3788T[◦C] + 34.91C[%] + 0.295T[◦C]C[%] + 0.0002T 2[◦C] − 6.925C2[%]

Let us find the stationary point. In order to do so, the above-stated expression is
first converted from natural variables to coded variables as follows.
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ŷ[%] = 97.77 + 2.10xT[−] + 3.89xC[−] − 2.95xT[−]xC[−] + 0.094x2T[−] − 1.73x2C[−]

Here,

xS =
[
xT,s

XC,s

]
, B =

[
0.094 − 1.475
−1.475 − 1.73

]
, b =

[
2.10
3.89

]
.

Then,

xS = −1

2
B−1b =

[−0.3699 0.3154
0.3154 0.0201

] [
2.10
3.89

]
=
[
0.4501
0.7405

]

Then, the stationary points are

xT,S = 0.4501, xC,S = 0.7405.

The stationary points in terms of natural variables are

xT,S = 0.4501 = T[◦C] − 45

20
⇒ T[◦C] = 54.002 ≈ 54

xC,S = 0.7405 = C[%] − 1.0

0.5
⇒ C[%] = 1.37 ≈ 1.4

The predicted response at the stationary point is

ŷ[%] = 97.77 + 2.10xT,S[−] + 3.89xC,S[−] − 2.95xT,S[−]xC,S[−]

+ 0.094x2T,S[−] − 1.73x2C,S[−] = 99.68.

Let us now determine the nature of stationary point. For this,

|B − λI| = 0 ⇒
∣∣∣∣
0.094 − λ − 1.475

−1.475 − 1.73 − λ

∣∣∣∣ = 0

λ2 + 1.636λ − 2.3382 = 0 ⇒ λ1 = 0.9162, λ2 = −2.5522

Because λ1 and λ2 are mixed in sign, the stationary point refers to the saddle point.

9.6 Response Surface Designs

It is known that appropriate designs of experiments are required for fitting and ana-
lyzing of first- and second-order response surfacemodels. It is not true that all designs
are corresponding to all models. In what follows below is some of the aspects for
selection of appropriate designs for fitting first- and second-order response surface
models.
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9.6.1 Designs for Fitting First-Order Model

Suppose we wish to fit the following first-order model

y = β0 +
n∑

i=1

βi xi + ε

The orthogonal first-order designs that minimizes the variance of the regression
coefficients are suitable for fitting the first-order model. The first-order orthogonal
designs are those designswhose off-diagonal elements of the (x′x)matrix are all zero.
The orthogonal first-order designs include two-level full factorial design and two-
level fractional factorial designs in which the main effects are not aliased with each
other. Special attention needs to be paid while selecting the two-level full factorial
design so that they afford an estimate of the experimental error. This can be done
by replicating the runs. A common method of including replication in these designs
is to augment the designs with several observations at the center. Interestingly, this
does not change the orthogonality property of the design. Let us consider following
examples.

Example 9.5 Show that 22 factorial design is an orthogonal design.
Here,

x =

⎡

⎢⎢⎣

−1 − 1
+1 − 1
−1 + 1
+1 + 1

⎤

⎥⎥⎦ , x′ =
[−1 + 1 − 1 + 1

−1 − 1 + 1 + 1

]
,

x′x =
[−1 + 1 − 1 + 1

−1 − 1 + 1 + 1

]
⎡

⎢⎢⎣

−1 − 1
+1 − 1
−1 + 1
+1 + 1

⎤

⎥⎥⎦ =
[
4 0
0 4

]

As the off-diagonal elements of the matrix are all zero, the above design is an orthog-
onal design.

Example 9.6 Show the layout of a 22 factorial design augmented with five center
points to fit a first-order model. The layout is shown in Table 9.4.

9.6.2 Experimental Designs for Fitting Second-Order Model

Suppose we wish to fit the following second-order model

ŷ = β0 +
n∑

i=1

βi xi +
n∑

i=1

βi j x
2
i +

∑

i< j

∑
βi j xi x j
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Table 9.4 Layout of 22 factorial design augmented with five center points

Run Factor

A B

1 –1 –1

2 1 –1

3 –1 1

4 1 1

5 0 0

6 0 0

7 0 0

8 0 0

9 0 0

The minimum conditions for response surface designs for fitting the above-stated
model are stated below.

• The designs should have at least three levels of each factor.
• The design should have at least 1 + 2n + n(n − 1)/2 distinct design points, where
n stands for the number of factors.

Examples of such designs are three-level full factorial designs, central composite
design (CCD), and Box Behnken design (BBD).

9.6.2.1 Three-Level Full Factorial Design

The popular three-level full factorial designs are 32 full factorial design and 33 full
factorial design. In a 32 full factorial design, there are two factors, each at three levels.
The geometrical view of 32 and 33 full factorial designs is shown in Fig. 9.8a and b,
respectively. Here, the low level is indicated by “0”, the middle by “1”, and high by
“2”, respectively.

9.6.2.2 Central Composite Design

The central composite design (CCD) is one of the, if not most, popular response
surface designs available for fitting the second-order response surface model. This
design consists of a 2n number of factorial runs, 2n number of axial runs, and a few
center runs. Here, the factorial runs refer to the runs of a 2n factorial design. The
axial runs indicate the points that are lying on the axes of the design. Of course, all
the factors are not varied simultaneously on the axial runs, rather they are varied as
one-factor-at-a-time. The center runs denote the points that are lying on the center
of the design. A two-factor CCD is shown in Table 9.5. The layout of this design is
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Fig. 9.8 Geometrical view of 32 and 33 full factorial designs

Table 9.5 Layout of two-factor CCD

Run 1 2 3 4 5 6 7 8 9 10 11

Factor
A

–1 1 –1 1 α −α 0 0 0 0 0

Factor
B

–1 –1 1 1 0 0 α −α 0 0 0

displayed in Fig. 9.9. It can be seen that the first four runs denote the four factorial
runs of a 22 factorial design. The next four runs refer to the four axial points of
this design. Here, α denotes the distance of the axial runs from the design center.
There are three choices available for the value of α. If the square region of this
design is of interest, then α is chosen as α = 1. Such a central composite design
is termed as square two-factor CCD. If the circular region of the two-factor CCD
is of interest, then α is chosen as α = √

n = √
2 = 1.414, where n stands for the

number of factors. Such a central composite design is termed as circular two-factor
CCD. Further, the two-factor central composite design can be made rotatable when
α = (nF )

1
4 = (22)

1
4 = 1.414, where nF is the number of factorial runs. As known,

rotatability is an important property for the second-ordermodel to provide reasonably
consistent and stable variance of the predicted response at points of interest x . This
means that the variance of the predicted response is same at all the points x that are
lying at the same distance from the design center. Note that a two-factor CCD can
be made circular as well as rotatable by choosing α as 1.414. Further, the center
runs are important to provide reasonably stable variance of the predicted response.
Generally, three to five center runs are recommended for a central composite design.
Like a two-factor CCD, a three-factor CCD can be constructed in a similar manner.
Table 9.6 displays a three-factor CCD. The layout of a rotatable three-factor CCD
is displayed in Fig. 9.10. Here, the values of α for cuboidal, spherical, and rotatable
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Fig. 9.9 Geometrical view of two-factor CCD

Table 9.6 Layout of three-factor CCD

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Factor A −1 1 −1 1 −1 1 −1 1 α −α 0 0 0 0 0 0 0

Factor B −1 −1 1 1 −1 −1 1 1 0 0 α −α 0 0 0 0 0

Factor C −1 −1 −1 −1 1 1 1 1 0 0 0 0 α −α 0 0 0

Fig. 9.10 Three-factor CCD

three-factor central composite designs are 1, 1.732, and 1.682, respectively. In this
way, central composite designs with more than three factors can be constructed.

9.6.2.3 Box Behnken Design

TheBoxBehnken design (BBD) is another popular response surface design available
for fitting the second-order model. This design is formed by combining 2n factorials
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Table 9.7 Scheme of a balanced incomplete block design

Treatment Block

1 2 3

1 X X

2 X X

3 X X

Table 9.8 Layout of three-factor BBD

Run Factor Run Factor

A B C A B C

1 –1 –1 0 13 0 0 0

2 1 –1 0 14 0 0 0

3 –1 1 0 15 0 0 0

4 –1 1 0

5 –1 0 –1

6 1 0 –1

7 –1 0 1

8 1 0 1

9 0 –1 –1

10 0 1 –1

11 0 –1 1

12 0 1 1

with a balanced incomplete block design. Let us illustrate how one can form a three-
factor BBD. Table 9.7 shows a scheme of a balanced incomplete block design (BIBD)
with three treatments in three blocks. As shown by “X” symbol, treatment 1 is run
in blocks 1 and 2, treatment 2 is run in blocks 1 and 3, and treatment 3 is run in
blocks 2 and 3 (Table 9.8). Here, each treatment occurs in two blocks (balanced) and
all treatment combinations cannot be run on one block (incomplete). Based on the
aforesaid BIBD, create a 22 factorial design with two blocks keeping the other block
at zero and repeat it for all factors you will get a three-factor BBD. This is shown
in Table 9.9. The layout of this design is shown in Fig. 9.11. It can be seen that this
design does not contain any point at the vertices of the cube and is a spherical design
with all points lying on a sphere of radius

√
2. In this way, BBD for more than three

factors can also be formed. The reader is instructed to do so.Note that there is noBBD
available for two factors. The Box Behnken designs are very efficient in terms of
number of runs required. One can compare that a three-factor CCD requires 19 runs
including five center runs, whereas a three-factor BBD requires 17 runs including
three center runs.
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Table 9.9 Factors and levels for corona-charging process

Process factors Levels

–1 0 +1

Applied voltage (kV) 5 10 15

Charging time (min) 15 30 45

Electrode distance
(mm)

25 30 35

Fig. 9.11 Geometrical view
of three-factor BBD

9.7 Multi-factor Optimization

In practice, we often need to optimize many responses simultaneously. Simultane-
ous optimization of multiple responses first involve development of an appropri-
ate model for each response and then find optimum conditions that optimize all
responses together or keep them in desired levels. There are many methods available
for the simultaneous optimization of multiple responses, and the most popular ones
in response surface methodology are based on overlay of contour plot and desirabil-
ity function approach. The former works well when there are only a few process
variables present, while the latter is able to work with many process variables. The
method of overlay of contour plot relies on overlaying the contour plots of differ-
ent responses to find a region of the optimum operating conditions. Generally, a
number of combinations of operating conditions are found to be satisfactory. The
other method desirability function approach was popularized by Derringer and Suich
(1980). In this method, each response yi is first converted to an individual desirability
function di such that di varies in the range 0 ≤ di ≤ 1. di = 0 indicates a completely
undesirable response, while di = 1 denotes the most desirable response. If the goal
for the response is to attain a maximum value of target T , then the individual desir-
ability function takes the form

d =

⎧
⎪⎨

⎪⎩

0 y < L(
y−L
T−L

)′
L ≤ y ≤ T

1 y > T
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where L indicates lower limit of the response, T refers to the target, and r denotes the
weight of the function. If r = 1 then the desirability function is linear. If r > 1 then
a higher emphasis is paid to the response being close to the target value. If 0 < r < 1
then the importance is low. If the target for the response is a minimum value then

d =

⎧
⎪⎨

⎪⎩

1 y < T(
U−y
U−T

)′
T ≤ y ≤ U

0 y > U

where U indicates the upper limit of the response.
The two-sided desirability function is required when the target T is located in-

between the lower (L) and upper (U ) limits. This is shown below

d =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 y < L(
y−L
T−L

)r1
L ≤ y ≤ T

(
U−y
U−T

)r2
T ≤ y ≤ U

0 y > U

where r1 and r2 denote the weights of the function. Then all individual desirabilities
are combined into an overall desirability as follows

D = (d1.d2. . . . .dm)1/m

where m stands for the number of responses. In this way, the overall desirability
becomes a function of the independent variables. The maximization of the overall
desirability function generally yields the optimum operating conditions. Let us better
understand this with the help of an example.

Example 9.7 In order to study the charge storage capability of a corona-charged
electret filtermedia, a 33 factorial experiment is carried outwith the following corona-
charging process factors and levels.

Initial surface potential (kV) and half-decay time (min) are chosen as responses.
The response surface equations are found as follows.

Y1 = 4.09 + 4.57X1 + 1.29X2 − 0.21X3 + 1.00X1X2 + 1.82X2
1

Y2 = 4.70 − 0.66X1 − 0.50X2 − 0.64X3 − 1.12X2
2 − 1.12X2

2 − 0.60X2
3

where X1, X2, and X3 denote the applied voltage, charging time, and electrode
distance, respectively, in terms of coded variables and Y1 and Y2 indicate initial
surface potential and half-decay time, respectively. The coded variables are found as
follows:
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X1 = Applied volatility(kV) − 10

5

X2 = Charging time(min) − 30

15

X3 = Electrode distance(mm) − 30

5
.

We need to determine the optimum corona-charging process conditions to obtain
enhanced initial surface potential and half-decay time simultaneously. We can use
the desirability function approach for this purpose. Here, both responses are required
to be maximized. Hence, the desirability functions are set as follows

d1 = Y1 − Y1,min

Y1,max − Y1,min
= Y1 − 1.11

12.64 − 1.11

= 4.09 + 4.57X1 + 1.29X2 − 0.21X3 + 1.00X1X2 + 1.82X2
1 − 1.11

12.64 − 1.11
,

d2 = Y2 − Y2,min

Y2,max − Y2,min
= Y1 − 1.57

6.00 − 1.57

= 4.70 − 0.66X1 − 0.50X2 − 0.64X3 − 1.12X2
2 − 1.12X2

2 − 0.60X2
3 − 1.57

6.00 − 1.57
.

where d1 and d2 stand for individual desirability functions for initial surface poten-
tial and half-decay time, respectively. The minimum and maximum initial surface
potential are determined as 1.11 and 12.64 kV, respectively. The minimum and max-
imum half-decay time are determined as 1.57 and 6.00 min, respectively. The overall
desirability function is then found as

D = (d1.d2)
1/2 =

[(
4.09 + 4.57X1 + 1.29X2 − 0.21X3 + 1.00X1X2 + 1.82X2

1 − 1.11

12.64 − 1.11

)

×
(
4.70 − 0.66X1 − 0.50X2 − 0.64X3 − 1.12X2

2 − 1.12X2
2 − 0.60X2

3 − 1.57

6.00 − 1.57

)]
.

The solution of this expression leads to X1 = 1, X2 = 0.06, X3 = −0.536. They,
in terms of natural variables, are as follows: applied voltage = 15 kV, charging time
= 30.90 min, and electrode distance = 27.32mm. At these process conditions, the
initial surface potential and half-decay time are predicted as 10.62 kV and 4.18 min,
respectively. The overall desirability is found as 0.70. It can be noted that there are
many commercial softwares like Design Expert, Minitab can be employed for this
purpose.



Problems 347

Problems

9.1 An article entitled “Fermentation of molasses by Zymomonas mobilis: Effects
on temperature and sugar concentration on ethanol production” published by
M. L. Cazetta et al. in Bioresource Technology, 98, 2824–2828, 2007, described
the experimental results shown in Table 9.10.

(a) Name the experimental design used in this study.
(b) Construct ANOVA for ethanol concentration.
(c) Do you think that a quadratic model can be fit to the data? If yes, fit the model

and if not, why not?

9.2 Find the path of steepest ascent for the following first-order model

ŷ = 1000 + 100x1 + 50x2

where the variables are coded as −1 ≤ xi ≤ 1.

9.3 In a certain experiment, the two factors are temperature and contact pressure.
Two central composite designs were constructed using following ranges on the two
factors.

Temperature : 500 ◦F − 1000 ◦F
Contact pressure : 15 psi − 21 psi

The designs listed in Table 9.11 are in coded factor levels.

Table 9.10 Data for Problem 9.1

Run Factors Response

Conc. of molasses
(g/L)

Temperature (◦C) Concentration of
ethanol (g/L)

1 150 25 46.43

2 250 35 42.39

3 150 25 47.73

4 250 35 45.22

5 200 30 55.36

6 200 30 54.31

7 200 30 55.57

8 80 30 28.55

9 200 37 22.83

10 270 30 33.43

11 200 18 7.87
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Table 9.11 Data for Problem 9.3

Run Design 1 Design 2

Temperature Pressure Temperature Pressure

1 −1 −1 −1 −1

2 −1 1 −1 1

3 1 −1 1 −1

4 1 1 1 1

5 0 −1 0 −1.5

6 0 1 0 1.5

7 −1 0 −1.5 0

8 1 0 1.5 0

9 0 0 0 0

10 0 0 0 0

11 0 0 0 0

(a) Replace the coded levels with actual factor level.
(b) Is either design rotatable? If not why?
(c) Construct a rotatable central composite design for this.

9.4 A disk-type test rig is designed and fabricated to measure the wear of a textile
composite under specified test condition. The ranges of the three factors chosen are
as follows:

Temperature : 500 − 1000 ◦F
Contact pressure : 15 − 21 psi

Sliding speed : 54 − 60 ft/sec

Construct a rotatable 33 central composite design for this experiment.

9.5 Construct a Box Behnken design for the experiment stated in Problem 9.5.

9.6 In a study to determine the nature of response system that relates yield of electro-
chemical polymerization (y) with monomer concentration (x1) and polymerization
temperature x2, the following response surface equation is determined

ŷ = 79.75 + 10.18x1 + 4.22x2 − 8.50x21 − 5.25x22 − 7.75x1x2.

Find the stationary point. Determine the nature of the stationary point. Estimate the
response at the stationary point.
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Table 9.12 Data for Problem 9.8

Run Factors Response

Initial pH (–) Initial conc. of
copper (mg/L)

Time (min) Removal of
copper (%)

1 5.5 50 45 93.07

2 3.5 50 90 96

3 4.5 32.5 67.5 93

4 4.5 32.5 67.5 93

5 3.5 15 90 91

6 4.5 61.93 67.5 93.8

7 4.5 32.5 67.5 92.9

8 6.18 32.5 67.5 91.6

9 4.5 32.5 67.5 92.8

10 3.5 50 45 92.7

11 4.5 32.5 67.5 92.9

12 4.5 32.5 29.66 91.24

13 4.5 3.07 67.5 85.5

14 4.5 32.5 105.34 96

15 5.5 50 90 94.16

16 3.5 15 45 85.9

17 5.5 15 45 88.2

18 5.5 15 90 91.2

19 4.5 32.5 67.5 92.9

20 2.82 32.5 67.5 91.4

9.7 Consider the following model

ŷ = 1.665 − 32 × 10−5x1 + 372 × 10−5x2 + 1 × 10−5x21 + 68 × 10−5x22 − 1 × 10−5x1x2

Find the stationary point. Determine the nature of the stationary point. Estimate the
response at the stationary point.

9.8 An article entitled “Central composite design optimization and artificial neural
networkmodeling of copper removal by chemically modified orange peel” published
by A. Ghosh et al. in Desalination and Water Treatment, 51, 7791–7799, 2013,
described the experimental results shown in Table 9.12.

(a) Name the design of experiments used here.
(b) Develop a suitable response surface model and construct ANOVA.
(c) Find out the stationary point and comment on the nature of stationary point.
(d) State the optimum process factors that maximize the percentage removal of

copper.
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Table 9.13 Data for Problem 9.9

Run Dopant
concentration
(M)

Rate of
addition
(mL/h)

OM ratio (–) Conductivity
(102 S/cm)

Yield (%)

1 0.3 10 0.8 11.21 86

2 0.3 30 1.5 15.04 94

3 0.3 50 0.8 1.37 90

4 1.05 50 0.1 0.15 32

5 1.05 10 1.5 1.91 89

6 1.05 30 0.8 153.34 91

7 1.05 30 0.8 253.45 92

8 1.05 50 1.5 6.63 63

9 1.8 10 0.8 0.05 51

10 1.8 50 0.8 0.04 50

11 1.8 30 1.5 0.01 43

12 1.05 30 0.8 191.1 87

13 0.3 30 0.1 0.88 55

14 1.05 10 0.1 0.71 32

15 1.8 30 0.1 0.01 30

9.9 An article entitled “Optimization of the conductivity and yield of chemically
synthesized polyaniline using a design of experiments” published by E.J. Jelmy et al.
in Journal of Applied Polymer Science, 1047–1057, 2013, described a three-factor
Box Behnken design with the results shown in Table 9.13.

(a) Develop an appropriate model and construct ANOVA for conductivity.
(b) Find out the stationary point and comment on the nature of stationary point.
(c) What operating conditions would you recommend if it is important to obtain a

conductivity as close as 0.2 S/cm?
(d) Develop an appropriate model and construct ANOVA for yield.
(e) Find out the stationary point and comment on the nature of stationary point.
(f) What operating conditions would you recommend if it is important to obtain a

yield as close as 90%?
(g) What operating conditions would you recommend if you wish to maximize both

conductivity and yield simultaneously?
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Chapter 10
Statistical Quality Control

10.1 Introduction

Statistical quality control means application of statistical techniques for checking the
quality of products. The products include manufactured goods such as computers,
mobile phones, automobiles, clothing and services such as health care, banking,
public transportation. The word “quality” is defined in many ways. To some people,
qualitymeans fitness for use. To others, quality is inversely proportional to variability.
Some people also think that qualitymeans degree of conformance to specifications of
products. One can readMontgomery (2001) for a detailed discussion on the meaning
of quality. Whatsoever be the definition of quality, there are many statistical methods
available for checking the quality of products. In this chapter, we will focus on two
important methods: acceptance sampling and quality control charts.

10.2 Acceptance Sampling

In a typical manufacturing set up, the manufacturing industries receive rawmaterials
from vendors and convert them into semifinished or finished products in order to sell
them to either suppliers or retailers. The raw materials received by the industries are
inspected, and the products received by the suppliers or retailers are also inspected
for taking a decision whether to accept or reject the raw materials and the products.
This is schematically shown in Fig. 10.1. The statistical technique used for taking
such decisions is known as acceptance sampling technique.

The input or output articles are available in lots or batches (population). It is
practically impossible to check each and every article of a batch. So we randomly
select a few articles (sample) from a batch, inspect them, and then draw conclusion
whether the batch is acceptable or not. This procedure is called acceptance sampling.

© Springer Nature Singapore Pte Ltd. 2018
D. Selvamuthu and D. Das, Introduction to Statistical Methods,
Design of Experiments and Statistical Quality Control,
https://doi.org/10.1007/978-981-13-1736-1_10

353

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1736-1_10&domain=pdf


354 10 Statistical Quality Control

Fig. 10.1 Material and process flow in a typical manufacturing setup

Sometimes the articles inspected are merely classified as defective or nondefec-
tive. Then, we deal with acceptance sampling of attributes. In case of acceptance
sampling of attributes, whether a batch is accepted or rejected is decided by accep-
tance sampling plan. Several types of acceptance sampling plans are used in practice.
Of them, single sampling plan is the most extensively followed. A more complicated
double sampling plan is also used occasionally.

When the property of the articles inspected is actually measured, then we deal
with acceptance sampling of variables.

10.3 Single Sampling Plan for Attributes

10.3.1 Definition of a Single Sampling Plan

A single sampling is defined as follows. Suppose a random sample of articles of size
n is drawn from a batch of articles of size N such that n � N . Then, each and every
article of the sample is inspected. If the number of defective articles found in the
sample is not greater than a certain number c, then the batch is accepted; otherwise,
it is rejected.



10.3 Single Sampling Plan for Attributes 355

10.3.2 Operating Characteristic Curve

The performance of an acceptance sampling plan can be seen from a curve, known
as operating characteristic curve. This curve plots the probability of acceptance of
the batch against the proportion of defective articles present in the batch. It informs
us the probability that a batch submitted with a certain fraction of defectives will
be accepted or rejected. It thus displays the discriminatory power of the acceptance
sampling plan.

The mathematical basis of the OC curve is given below. Let us assume that the
proportion of defective articles in the batch is p. Then, when a single article is
randomly chosen from a batch, the probability that it will be defective is p. Further,
assume that the batch size is sufficiently larger than the sample size n so that this
probability is the same for each article in the sample. Thus, the probability of finding
exactly r number of defective articles in a sample of size n is

P(r) = n!
r !(n − r)! p

r (1 − p)n−r

Now, the batch will be accepted if r ≤ c. Then, according to the addition rule of
probability (refer to Chap.2), the probability of accepting the batch is

Pa(p) = P(r = 0) + P(r = 1) + P(r = 2) + · · · + P(r = c)

=
c∑

r=0

n!
r !(n − r)! p

r (1 − p)n−r

This tells that once n and c are known, the probability of accepting a batch depends
only on the proportion of defectives in the batch.

In practice, the operating characteristic curve looks like as shown in Fig. 10.2.
Nevertheless, an ideal OC curve that discriminates perfectly the good and the bad
batches would have looked like as shown in Fig. 10.2. It can be seen that the ideal
OC curve runs horizontally at a probability of acceptance Pa(p) = 1 until a level
of fraction defective which is considered to be “bad” is obtained. At this point, the
curve drops vertically to a probability of acceptance Pa(p) = 0 and then the curve
runs horizontally at Pa(p) = 0 for all fraction defectives greater than the undesirable
level.

Example 10.1 Anautomotive companydecides to accept or reject a batch of bearings
as per the following acceptance sampling plan. A batch is accepted if not more than
four bearings are found to be defective in a sample of 100 bearings taken randomly
from the batch; otherwise, the batch is rejected. If 100 batches obtained from a
process that manufactures 2% defective bearings are submitted to this plan, how
many batches the automotive company will expect to accept?
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Fig. 10.2 Operating
characteristic (OC) curve

Solution: Here n = 100, c = 4, p = 0.02. The probability of acceptance is Pa(p =
0.02) =

4∑

r=0

100!
r !(100 − r)! (0.02)

r (1 − 0.02)100−r = 0.9492. It means that the prob-

ability of accepting the batch is approximately 0.95. Hence, the probability of reject-
ing the batch is 1 − 0.95 = 0.05. The company will expect to accept 95 out of 100
batches.

10.3.3 Acceptable Quality Level

One of the important characteristics of the OC curve is associated with acceptable
quality level (AQL). This represents the poorest level of quality for the producer’s
process that the consumer would consider to be acceptable as process average say
p1. Ideally, the producer should try to produce lots of quality better than p1. Assume
that there is a high probability, say 1 − α, of accepting a batch of quality p1. Then,
the probability of rejecting a batch of quality p1 is α, which is known as producer’s
risk. This is shown in Fig. 10.3. As shown, when p = p1, Pa(p1) = 1 − α.

10.3.4 Rejectable Quality Level

The other important characteristic of the OC curve is rejectable quality level (RQL).
This is otherwise known as lot tolerance proportion defective (LTPD). It represents
the poorest level of quality that the consumer is willing to accept in an individual lot.
Below this level, it is unacceptable to the consumer. In spite of this, there will be a
small chance (probability) β of accepting such a bad batch (with fraction defective
p2) by the consumer; β is known as consumer’s risk. This is shown in Fig. 10.4. As
shown, when p > p2 then Pa(p2) = β.
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Fig. 10.3 Acceptable
quality level

Fig. 10.4 Rejectable quality
level

10.3.5 Designing an Acceptance Sampling Plan

To design an acceptance sampling plan, it is necessary to know n and c. They can be
calculated as follows. It is known that

Pa(p1) = 1 − α =
c∑

r=0

n!
r !(n − r)! p

r
1(1 − p1)

n−r ,

Pa(p2) = β =
c∑

r=0

n!
r !(n − r)! p

r
2(1 − p2)

n−r .

The solution is based on χ2 distribution with 2(c + 1) degree of freedom
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χ2
2(c+1),1−α = 2np1, χ2

2(c+1), β = 2np2 (10.1)

χ2
2(c+1),1−α

χ2
2(c+1), β

= 2np1
2np2

= p1
p2

. (10.2)

In a sampling plan, p1, p2, α, and β are given. Then, the value of c can be found out
from Eq. (10.2), and then, the value of n can be found out from Eq. (10.1).

Example 10.2 Design an acceptance sampling plan for which acceptable quality
level (AQL) is 0.05, the rejectable quality level (RQL) is 0.15, the producer’s risk is
0.05, and the consumer’s risk is 0.05.

Solution: Here p1 = 0.05, p2 = 0.15, α = 0.05, β = 0.05.

χ2
2(c+1),1−α

χ2
2(c+1), β

= 2np1
2np2

= p1
p2

= 0.05

0.15
= 0.3333

From χ2 table (see Table A.8), we find χ2
18,0.95 = 9.39 & χ2

18,0.05 = 28.87. and
hence

χ2
18,0.95

χ2
18,0.05

= 9.39

28.87
= 0.3253 ≈ 0.33

χ2
18,0.95 = 9.39 = 2np1 = 0.1n ⇒ n = 9.39

0.1
= 93.9

χ2
18,0.05 = 28.87 = 2np2 = 0.3n ⇒ n = 28.87

0.3
= 96.23

Then,

n = 1

2
(93.9 + 96.23) = 95.07 ≈ 95

2(c + 1) = 18 ⇒ c = 8.

Example 10.3 An automotive company receives batches of mirrors and decides to
accept or reject a batch according to an acceptance sampling plan for which AQL is
4%, RQL is 16%, producer’s risk is 5%, and consumer’s risk is 10%. Determine the
probability of acceptance of a batch produced by a process that manufactures 10%
defective mirrors.

Solution: Here, p1 = 0.04, p2 = 0.16, α = 0.05, β = 0.10,

χ2
2(c+1),1−α

χ2
2(c+1),β

= 2np1
2np2

= p1
p2

= 0.04

0.16
= 0.25

From χ2 table (see Table A.8), χ2
10,0.95 = 3.94 and χ2

10,0.10 = 15.99, and we have
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χ2
10,0.95

χ2
10,0.10

= 3.94

15.99
= 0.2464 ≈ 0.25.

Hence,

2(c + 1) = 10 so, c = 4

χ2
10,0.95 = 3.94 = 2np1 = 0.08n ⇒ n = 49.25

χ2
10,0.10 = 15.99 = 2np2 = 0.32n ⇒ n = 49.97

Therefore, n = 1
2 (49.25 + 49.97) = 49.61 ≈ 50. The required probability of accep-

tance of a batch is equal to

Pa(p = 0.10) =
4∑

r=0

(
50
r

)
pr (1 − p)50−r =

(
50
0

)
(0.1)0(0.9)50 +

(
50
1

)
(0.1)1(0.9)49 +

(
50
2

)
(0.1)2(0.9)48 +

(
50
3

)
(0.1)3(0.9)47 +

(
50
4

)
(0.1)4(0.9)46

= 0.005154 + 0.028632 + 0.077943 + 0.138565 + 0.180905 = 0.431199

10.3.6 Effect of Sample Size on OC Curve

It is known that an ideal OC curve discriminates perfectly between good and bad
batches. Theoretically, the ideal OC curve can be obtained by 100% inspection.
However, in practice, it is almost never realized. Nevertheless, Fig. 10.5 shows that
as the sample size n increases, the OC curve becomes more like the idealized OC

Fig. 10.5 Effect of changing
sample size n on OC curve
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Fig. 10.6 Effect of changing
acceptance number c on OC
curve

curve. It can be noted that the acceptance number c has been kept proportional to the
sample size n. It can be therefore said that the plans with large sample (higher value
of n) offer more discriminatory power.

10.3.7 Effect of Acceptance Number on OC Curve

Figure 10.6 displays the effect of acceptance number c on the OC curve. Here, the
sample size n is kept constant, but the acceptance number is varied. It can be observed
that as the acceptance number c decreases, the OC curve shifts to the left, although
the slope of the curve does not change appreciably. It can be thus said that the plans
with smaller value of c provide discrimination at lower levels of lot fraction defective
than plans with larger values of c do.

10.4 Double Sampling Plan for Attributes

Occasionally, a double sampling plan is used in practice. In this plan, a second sample
is inspected if the first sample is not conclusive for either accepting the lot or rejecting
the lot. A double sampling plan is described by five parameters N , n1, n2, c1, and c2.
Here, N stands for the lot size fromwhere the samples are taken. n1 and n2 denote the
sizes of first and second samples, respectively. c1 refers to the acceptance number for
the first sample, whereas c2 represents the acceptance number for both samples. The
above sampling procedure is done as follows. A random sample of size n1 is selected
from the lot of size N . Suppose that the number of defectives found in this sample
is d1. If d1 ≤ c1, then the lot is accepted on the first sample. If d1 > c2, then the lot
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is rejected on the first sample. If c1 < d1 ≤ c2, then a second random sample of size
n2 is drawn from the lot. Suppose that the number of defectives found in the second
sample is d2. Then, the combined number of defectives from both the first sample
and the second sample, d1 + d2, is used to determine whether the lot is accepted or
rejected. If d1 + d2 ≤ c2, then the lot is accepted. But if d1 + d2 > c2 then the lot is
rejected.

The performance of a double sampling plan can be seen from its operating char-
acteristic (OC) curve. Let us illustrate the mathematical basis of the OC curve with
the help of an example.

Example 10.4 Suppose a double sampling plan is set as follows: n1 = 50, c1 =
1, n2 = 100, c2 = 3. Let Pa(p) be the probability of acceptance on the combined
samples and P I

a (p) and P I I
a (p) be the probability of acceptance on the first

and the second samples, respectively. Then, the following expression holds true
Pa(p) = P I

a (p) + P I I
a (p).

The expression for P I
a (p) is

P I
a (p) =

1∑

d1=0

50!
d1!(50 − d1)! p

d1(1 − p)50−d1 .

If p = 0.05 then P I
a (p) = 0.279. Now, a second sample can be drawn only if there

are two or three defectives on the first sample. Suppose we find two defectives on
the first sample and one or less defectives on the second sample. The probability of
this is

Pa(d1 = 2, d2 ≤ 1) = Pa(d1 = 2) · Pa(d2 ≤ 1) = 50!
2!48! (0.05)

2(0.95)48

×
1∑

d2=0

100!
d2!(100 − d2)! (0.05)

d2(0.95)100−d2

= 0.261 × 0.037 = 0.009

Suppose we find three defectives on the first sample and no defective on the second
sample. The probability of this is

Pa(d1 = 3, d2 = 0) = Pa(d1 = 3) · Pa(d2 = 0) = 50!
3!47! (0.05)

3(0.95)47

× 100!
0!100! (0.05)

0(0.95)100

= 0.220 × 0.0059 = 0.001

Then, the probability of acceptance on the second sample is

P I I
a (p) = Pa(d1 = 2, d2 ≤ 1) + Pa(d1 = 3, d2 = 0) = 0.009 + 0.001 = 0.010
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The probability of acceptance of the lot is then

Pa(p = 0.05) = P I
a (p = 0.05) + P I I

a (p = 0.05) = 0.279 + 0.010 = 0.289

The double sampling plan has certain advantages over the single sampling plan. The
principal advantage lies in reduction of total amount of inspection. Suppose that the
first sample taken under a double sampling plan is smaller in size than the sample
required for a single sampling plan that offers the consumer the same protection. If
the decision of accepting or rejecting a lot is taken based on the first sample, then the
cost of inspection is less for the double sampling plan than the single sampling plan.
Also, it is possible to reject the lot without complete inspection of the second sample.
(This is known as curtailment on the second sample.) Hence, the double sampling
plan often offers less inspection cost than the single sampling plan. Further, the
double sampling plan offers a psychological advantage than the single sampling
plan. To a layman, it appears to be unfair to reject a lot on the basis of inspection of
one sample and seems to be more convincing to reject the lot based on inspection
of two samples. However, there is no real advantage of double sampling plan in this
regard. This is because the single and the double sampling plans can be chosen so
that they have same OC curves, thus offering same risks of accepting or rejecting
lots of given quality. The double sampling plan has a few disadvantages. Sometimes,
if curtailment is not done on the second sample, the double sampling plan requires
more inspection that the single sampling plan, though both are expected to offer same
protection. Further, the double sampling plan is more difficult to administer than the
single sampling plan.

10.5 Acceptance Sampling of Variables

10.5.1 Acceptance Sampling Plan

Consider a producer who supplies batches of articles having mean value μ of a
variable (length, weight, strength, etc.) and standard deviation σ of the variable. The
consumer has agreed that a batch will be acceptable if

μ0 − T < μ < μ0 + T

where μ0 denotes the critical (nominal) mean value of the variable and T indicates
the tolerance for themean value of the variable. Otherwise, the batch will be rejected.
Here, the producer’s risk α is the probability of rejecting a perfect batch, for which
μ = μ0. The consumer’s risk β is the probability of accepting an imperfect batch,
the one for which μ = μ0 ± T .

Consider that a large number of random samples, each of size n, are prepared from
the batch. Let us assume that the probability distribution of mean x of samples, each
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Fig. 10.7 Producer’s risk
condition

of size n, taken from a batch, is (or tends to) normal with mean μ, where μ = μ0

and standard deviation σ√
n
. Then, the batch will be accepted if

μ0 − t < x < μ0 + t

where t denotes the tolerance for sample mean x . Otherwise, the batch will be
rejected. Here, the producer’s risk α is the probability of rejecting a perfect batch
and the consumer’s risk β is the probability of accepting an imperfect batch.

10.5.2 The Producer’s Risk Condition

The producer’s risk α is the probability of rejecting a perfect batch. This is shown in
Fig. 10.7.

Here, u α
2

= (μ0+t)−μ0
σ√
n

= t
√
n

σ
where u α

2
is the standard normal variable corre-

sponding to a tail area α
2 .

10.5.3 The Consumer’s Risk Condition

The consumer’s risk β is the probability of accepting an imperfect batch. This is
shown in Fig. 10.8.

Here, u β

2
= (μ0−t)−(μ0−T )

σ√
n

= (T−t)
√
n

σ
where u β

2
is the standard normal variable

corresponding to a tail area β

2 .

10.5.4 Designing of Acceptance Sampling Plan

To design an acceptance sampling plan, it is necessary to know n and t . They can be
calculated as follows. It is known that
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Fig. 10.8 The consumer’s risk condition

u β

2
= (T − t

√
n)

σ
= T

√
n

σ
− t

√
n

σ
= T

√
n

σ
− u α

2

Hence,

n =
σ 2(u α

2
+ u β

2
)2

T 2

u α
2

= t
√
n

σ
⇒ t = σ

u α
2√
n

= σ
u α

2√
σ 2(u α

2
+u β

2
)2

T 2

= T
u α

2

(u α
2

+ u β

2
)

Thus, we get,

n =
σ 2(u α

2
+ u β

2
)2

T 2
, t = T

u α
2

(u α
2

+ u β

2
)

Example 10.5 A producer (spinner) supplies yarn of nominal linear density equal to
be 45 tex. The customer (knitter) accepts yarn if its mean linear density lies within
a range of 45 ± 1.5 tex. As the knitter cannot test all the yarns supplied by the
spinner, the knitter would like to devise an acceptance sampling scheme with 10%
producer’s risk and 5% consumer’s risk . Assume the standard deviation of count
within a delivery is 1.2 tex.

Solution: Here, μ0[tex] = 45, T[tex] = 1.5, α = 0.10, β = 0.05, σ[tex] = 1.2.
Assume the mean linear density of yarn samples, each of size n, follows (or tends to
follow) normal distribution with mean 45 tex and standard deviation 1.2 tex. Then,
the standard normal variable takes the following values

u α
2

= u0.05 = 1.6449, u β

2
= u0.025 = 1.9600.

Then, n[−] =
σ 2

[tex](u α
2 [−] + u β

2 [−]
)2

T 2
[tex]

= 1.22(1.6449 + 1.9600)2

(1.5)2
= 8.3 ≈ 9
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and t[tex] = T[tex]
u α

2 [−]
(u α

2 [−]+u β
2 [−])

= (1.5)(1.6449)
(1.6449+1.9600) = 0.68.

Thus, the sampling scheme is as follows: Take a yarn sample of size 9, and accept
the delivery if the sample mean lies in the range of 45 ± 0.68 tex, that is in between
44.32 tex and 45.68 tex; otherwise, reject the delivery.

Example 10.6 A paper filter manufacturer supplies filters of nominal grammage
equal to 455 g/m2. A customer accepts filters if the mean grammage lies within a
range of 450–460 g/m2. As the customer cannot test all the filters supplied by the
manufacturer, the customerwishes to devise an acceptance sampling schemewith 5%
producer’s risk and 5% consumer’s risk. Assume the standard deviation of grammage
within a delivery is 9 g/m2.

Solution: Here, μ = 455 g/m2, T = 5 g/m2, α = 0.05, and β = 0.05. Assume that
the grammage of filter samples, each of size n, follows normal distributionwithmean
455 g/m2 and standard deviation 5 g/m2. Then, the standard normal variable takes
the following values u α

2
= u0.025 = 1.96 and u β

2
= u0.025 = 1.96

Then,

n =
σ 2(u α

2
+ u β

2
)2

T 2
= 92(1.96 + 1.96)2

52
= 49.79 ≈ 50

and

t = T
u α

2

u α
2

+ u β

2

= 0.5 × 1.96

(1.96 + 1.96)
= 0.25.

Thus, the sampling scheme is as follows: Take a mirror sample of size 50, and accept
the delivery if the sample mean lies in the range of 455 ± 0.25 g/m2, that is in
between 454.75 g/m2 and 455.25 g/m2; otherwise, reject the delivery.

10.6 Control Charts

In a typical manufacturing industry, the input material is processed through a man-
ufacturing process and finally converted to semifinished or finished products. This
is shown in Fig. 10.1. In order to achieve the targeted quality of products, the manu-
facturing process is always kept under control. Whether the manufacturing process
is under control or out of control can be found through a technique, called control
chart.

10.6.1 Basis of Control Charts

The basis of control charts lies in checking whether the variation in the magnitude of
a given characteristic of a manufactured product is arising due to random variation
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or assignable variation. While the random variation is known as natural variation
or allowable variation and it is often small in magnitude, the assignable variation is
known as nonrandom variation or preventable variation and it is often relatively high
in magnitude. Examples of random variation include slight variation in temperature
and relative humidity inside a manufacturing plant, slight vibration of machines, lit-
tle fluctuation in voltage and current. But the causes of assignable variation include
defective rawmaterial, faulty equipment, improper handling ofmachines, negligence
of operators, unskilled technical staff. If the variation is arising due to random vari-
ation, the process is said to be under control. But if the variation is arising due to
assignable variation, then the process is said to be out of control.

10.6.2 Major Parts of a Control Chart

Figure 10.9 shows a typical control chart. This is a graphical display of a quality
characteristic that has been measured or computed from a sample versus the sample
number. The three major parts of a control chart are center line (CL), upper control
limit (UCL), and lower control limit (LCL). The central line (CL) indicates the
average value of the quality characteristic corresponding to the under-control state,
desired standard, or the level of the process. The upper control limit (UCL) and lower
control limit (LCL) are chosen such that if the process is under control then all the
sample points will fall between them.

If m is the underlying statistic so that E(m) = μm and V (m) = σ 2
m , then

CL = μm

UCL = μm + kσm

Fig. 10.9 Outline of a
control chart
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LCL = μm − kσm

where E stands for expectation,V stands for variance,μm mean ofm andσm indicates
variance of m, and k is the “distance of the control limits from the central line”,
expressed in standard deviation units. The value of k was first proposed as 3 by Dr.
Walter S. Shewhart, and hence, such control charts are known as Shewhart control
charts.

10.6.3 Statistical Basis for Choosing k Equal to 3

Let us assume that the probability distribution of the sample statistic m is (or tends
to be) normal with mean μm and standard deviation σm . Then

P(μm − 3σm ≤ m ≤ μm + 3σm) = 0.9973.

To know more about this, please refer to Chap.2 of this book. This means the prob-
ability that a random value of m falls in between the 3σ limits is 0.9973, which is
very high. On the other hand, the probability that a random value of m falls outside
of the 3σ limits is 0.0027, which is very low. When the values of m fall in between
the 3σ limits, the variations are attributed due to chance variation, then the process is
considered to be statistically controlled. But when one or more values of m fall out
of the 3σ limits, the variations are attributed to assignable variation, and the process
is said to be not under statistical control.

Let us now analyze what happens when k > 3 or k < 3. In a given situation, two
possibilities arise. The chance causes alone are present, or the assignable causes
are also present. If the chance causes alone are present, then there are two possi-
ble courses of action, namely to accept or reject the process. Needless to say that
accepting the process when the chance causes alone are present is the desired cor-
rect action, whereas rejecting the process when the chance causes are present is the
undesired erroneous action. On the other hand, if the assignable causes are present
then also there are two courses of action exist, that is, accept the process or reject
the process. Again, needless to say that accepting the process when the assignable
causes are present is the undesired erroneous action, whereas rejecting the process
when the assignable causes are present is the desired correct action. This is depicted
in Table 10.1. Of the two above-mentioned undesired erroneous actions, rejecting
a process when chance causes are present (process is in control) is taken as Type I
error, while accepting a process when assignable causes are present (process is out
of control) is considered as Type II error (Chap. 5 deals with these errors in more
detail). When k > 3, Type I error decreases but Type II error increases. When k < 3,
Type I error increases while Type II error decreases.
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Table 10.1 Possibilities and courses of action

Possibilities Courses of action

Presence of chance Accept a process Reject a process

causes (desired correct action) (undesired erroneous action)

(Type I error)

Presence of Accept a process Reject a process

assignable causes (undesired erroneous action) (desired correct action)

(Type II error)

10.6.4 Analysis of Control Chart

The control charts are analyzed to take a decision whether the manufacturing process
is under control or out of control. The following one or more incidents indicate the
process to be out of control (presence of assignable variation).

• A point falls outside any of the control limits.
• Eight consecutive points fall within 3σ limits.
• Two out of three consecutive points fall beyond 2σ limits.
• Four out of five consecutive points fall beyond 1σ limits.
• Presence of upward or downward trend.
• Presence of cyclic trend.

Such incidents are displayed in Fig. 10.10. In (a), a point falls outside the upper
control limit, thus indicating the process out of control. In (b), eight consecutive
points fall within a 3σ limit, though none falls beyond the 3σ limit. Such a pattern is
very nonrandom in appearance and, hence, does not indicate statistical control. If the
points are truly random, a more even distribution of the points above and below the
central line is expected. In (c), two out of three consecutive points fall beyond a 2σ
limit, though none falls beyond the 3σ limit. This arrangement of points is known
as a run. Since the observations are increasing, this is called a run-up. Similarly, a
sequence of decreasing points is called a run down. Runs are an important measure
of nonrandom behavior of a control chart and indicates an out-of-control condition.
In (d), four out of five consecutive points fall beyond a 1σ limit, though none falls
beyond the 3σ limit. This arrangement of run also indicates an out-of-control con-
dition. In (e), an upward trend of points is shown. Sometimes, a downward trend
of points can also be seen. In (f), a cyclic trend is shown. Such upward or down-
ward or cyclic trend has a very low probability of occurrence in a random sample
of points.Hence, such trends are often taken as a signal of an out-of-control condition.
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(a) (b)

(c) (d)

(e) (f)

Fig. 10.10 Control charts indicating process is out of control

10.7 Types of Shewhart Control Charts

There are two types of Shewhart control charts often used in practice. They are
Shewhart control charts for variables and Shewhart control chart for attributes. The
former type includes mean chart (x-bar chart), range chart (R chart), and standard
deviation chart (s chart). The latter type includes control chart for fraction defective
(p chart), control chart for number of defectives (np chart), and control chart for
number of defects per unit (c chart). This is shown in Fig. 10.11.

10.7.1 The Mean Chart

The mean chart (x-bar chart) is constructed to examine whether the process mean is
under control or not. This is constructed as follows.

Let xi j , j = 1, 2, . . . , n be the measurements on i th sample (i = 1, 2, . . . , k).
The mean xi , range Ri , and standard deviation si for i th sample are given by
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Fig. 10.11 Types of
Shewhart control charts

xi = 1

n

n∑

j=1

xi j , Ri = n
max
j=1

(xi j ) − n
min
j=1

(xi j ), si =
√√√√

n∑

j=1

(xi j − xi )2

n

Then, the mean x of sample means, the mean R of sample ranges, and the mean s of
sample standard deviations are given by

x = 1

k

n∑

j=1

x j , R = 1

k

n∑

j=1

R j , s = 1

k

n∑

j=1

s j

Let the mean and standard deviation of the population from which samples are taken
be μ and σ , respectively. Then, the control limits for the i th sample mean x̄i are
given as

CL = E(xi ) = μ

UCL = E(xi ) + 3
√
Var(xi ) = μ +

(
3√
n

)
σ = μ + Aσ

LCL = E(xi ) − 3
√
Var(xi ) = μ −

(
3√
n

)
σ = μ − Aσ.

The values for A for different sample sizes are given in Table 10.2.
When the mean μ and standard deviation σ are not known, the control limits are

given as

CL = x

UCL =
⎧
⎨

⎩
x +

(
3

c2
√
n

)
s = x + A1s

x +
(

3
c2

√
n
s
)

= x + A1s

LCL =
⎧
⎨

⎩
x −

(
3

c2
√
n

)
s = x − A1s

x −
(

3
c2

√
n
s
)

= x − A1s
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Table 10.2 Factors for calculation of control charts

Run Factors Factors Factors

n A A1 A2 c2 B1 B2 B3 B4 d2 D1 D2 D3 D4

2 2.121 3.76 1.886 0.5642 0 1.843 0 3.297 1.128 0 3.686 0 3.267

3 1.232 2.394 1.023 0.7236 0 1.858 0 2.568 1.693 0 4.358 0 2.575

4 1.5 1.88 0.729 0.7979 0 1.808 0 2.266 2.059 0 4.698 0 2.282

5 1.342 1.596 0.577 0.8407 0 1.756 0 2.089 2.326 0 4.918 0 2.115

6 1.225 1.41 0.483 0.8686 0.026 1.711 0.03 1.97 2.534 0 5.078 0 2.004

7 1.134 1.277 0.419 0.8882 0.105 1.672 0.118 1.882 2.704 0.205 5.203 0.076 1.924

8 1.061 1.175 0.373 0.9027 0.167 1.638 0.185 1.815 2.847 0.387 5.307 0.136 1.864

9 1 1.094 0.337 0.9139 0.219 1.509 0.239 1.761 2.97 0.546 5.394 0.184 1.816

10 0.949 1.028 0.308 0.9227 0.262 1.584 0.284 1.716 3.078 0.687 5.469 0.223 1.777

11 0.905 0.973 0.285 0.93 0.299 1.561 0.321 1.679 3.173 0.812 5.534 0.256 1.744

12 0.866 0.925 0.266 0.9359 0.331 1.541 0.354 1.646 3.258 0.924 5.592 0.284 1.716

13 0.832 0.884 0.249 0.941 0.359 1.523 0.382 1.618 3.336 1.026 5.646 0.308 1.692

14 0.802 0.848 0.235 0.9453 0.384 1.507 0.406 1.594 3.407 1.121 5.693 0.329 1.671

15 0.775 0.816 0.223 0.9499 0.406 1.492 0.428 1.572 3.472 1.207 5.737 0.348 1.652

16 0.759 0.788 0.212 0.9523 0.427 1.478 0.448 1.552 3.532 1.285 5.779 0.364 1.636

17 0.728 0.762 0.203 0.9951 0.445 1.465 0.466 1.534 3.588 1.359 5.817 0.379 1.621

18 0.707 0.738 0.194 0.9576 0.461 1.454 0.482 1.518 3.64 1.426 5.854 0.392 1.608

19 0.688 0.717 0.187 0.9599 0.477 1.443 0.497 1.503 3.689 1.49 5.888 0.404 1.596

20 0.671 0.697 0.18 0.9619 0.491 1.433 0.51 1.499 3.735 1.548 5.922 0.414 1.586

21 0.655 0.679 0.173 0.9638 0.504 1.424 0.523 1.477 3.778 1.606 5.95 0.425 1.575

22 0.64 0.662 0.167 0.9655 0.516 1.415 0.534 1.466 3.819 1.659 5.979 0.434 1.566

23 0.626 0.647 0.162 0.967 0.527 1.407 0.545 1.455 3.858 1.71 6.006 0.443 1.557

24 0.612 0.632 0.157 0.9684 0.538 1.399 0.555 1.445 3.895 1.759 6.031 0.452 1.548

25 0.6 0.61 0.153 0.9696 0.548 1.392 0.565 1.435 3.931 1.804 6.058 0.459 1.541

The values for A1 and A2 for different sample sizes are given in Table 10.2.

10.7.2 The Range Chart

The range chart (R chart) is constructed to examine whether the process variation is
under control or out of control. This is constructed as follows.

Let xi j , j = 1, 2, . . . , n be the measurements on i th sample (i = 1, 2, . . . , k).
The range Ri for i th sample is given by

Ri = j=n
max
j=1

(xi j ) − j=n
min
j=1

(xi j ).
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Then, the mean R of sample ranges is given by

R = 1

k

k∑

i=1

Ri .

When the standard deviation σ of the population from which samples are taken is
known, the control limits for Ri are specified as:

CL = E(Ri ) = d2σ

UCL = E(Ri ) + 3
√
Var(Ri ) = d2σ + 3d3σ = (d2 + 3d3)σ = D2σ

LCL = E(Ri ) − 3
√
Var(Ri ) = d2σ − 3d3σ = (d2 − 3d3)σ = D1σ

The values for D1 and D2 for different sample sizes are given in Table 10.2. When
the standard deviation σ of the population is not known, the corresponding control
limits are:

CL = E(Ri ) = R

UCL = E(Ri ) + 3
√
Var(Ri ) = R +

(3d3
d2

)
R =

(
1 + 3d3

d2

)
R = D4R

LCL = E(Ri ) − 3
√
Var(Ri ) = R −

(3d3
d2

)
R =

(
1 − 3d3

d2

)
R = D3R.

The values of D3 and D4 for different sample sizes are given in Table 10.2.

10.7.3 The Standard Deviation Chart (s-Chart)

The standard deviation chart (s chart) is constructed to examine whether the process
variation is under control or out of control. Let xi j , j = 1, 2, . . . , n be the measure-
ments on i th sample (i = 1, 2, . . . , k). The standard deviation si for the i th sample
is given by

si =
√√√√

n∑

j=1

(xi j − xi )2

n

Then, the mean s of sample standard deviations is given by

s = 1

k

k∑

i=1

si

Let us now decide the control limits for si . When the standard deviation σ of the
population from which samples are taken is known, then
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Table 10.3 Yarn strength data

Sample
no.

Yarn strength (cN/tex)

1 14.11 13.09 12.52 13.4 13.94 13.4 12.72 11.09 13.28 12.34

2 14.99 17.97 15.76 13.56 13.31 14.03 16.01 17.71 15.67 16.69

3 15.08 14.41 11.87 13.62 14.84 15.44 13.78 13.84 14.99 13.99

4 13.14 12.35 14.08 13.4 13.45 13.44 12.9 14.08 14.71 13.11

5 13.21 13.69 13.25 14.05 15.58 14.82 14.31 14.92 10.57 15.16

6 15.79 15.58 14.67 13.62 15.9 14.43 14.53 13.81 14.92 12.23

7 13.78 13.9 15.1 15.26 13.17 13.67 14.99 13.39 14.84 14.15

8 15.65 16.38 15.1 14.67 16.53 15.42 15.44 17.09 15.68 15.44

9 15.47 15.36 14.38 14.08 14.08 14.84 14.08 14.62 15.05 13.89

10 14.41 15.21 14.04 13.44 15.85 14.18 15.44 14.94 14.84 16.19

CL = E(si ) = c2σ

UCL = E(si ) + 3
√
Var(si ) = c2σ + 3c3σ = (c2 + 3c3)σ = B2σ

LCL = E(si ) − 3
√
Var(si )) = c2σ − 3c3σ = (c2 − 3c3)σ = B1σ.

The values for B1 and B2 for different sample sizes are given in Table 10.2. When
the standard deviation σ of the population is not known, then

CL = E(si ) = √
s

UCL = E(si ) + 3
√
Var(si ) = √

s + 3
c3
c2

√
s =

(
1 + 3

c3
c2

)√
s = B4

√
s

LCL = E(si ) − 3
√
Var(si ) = √

s − 3
c3
c2

√
s =

(
1 − 3

c3
c2

)√
s = B3

√
s.

The values for B3 and B4 for different sample sizes are given in Table 10.2.

Example 10.7 Table 10.3 displays the experimental data of yarn strength. It is of
interest to know whether the yarn manufacturing process was under control or out
of control.

Solution: Let us first calculate themean, range, and standard deviation of the samples
of yarn strength. They are shown in Table 10.4.

The mean of sample means is calculated as follows.

xcN.tex−1 = 14.41.

The mean of sample ranges is calculated as follows.

RcN.tex−1 = 3.11.
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Table 10.4 Basic statistical characteristics of yarn strength

Sample no. (i) x
i[cN.tex−1] R

i[cN.tex−1] S
i[cN.tex−1]

1 12.99 3.02 0.83

2 15.57 4.66 1.54

3 14.19 3.57 0.97

4 13.47 2.36 0.64

5 13.96 5.01 1.36

6 14.55 3.67 1.07

7 14.23 2.09 0.72

8 15.74 2.42 0.69

9 14.59 1.58 0.54

10 14.85 2.75 0.81

Average 14.41 3.11 0.92

The mean of sample standard deviations is calculated as follows.

scN.tex−1 = 0.92.

Now, the control limits for mean chart are computed as follows. The value of A2 can
be obtained from Table 10.2.

CL = x = 14.41 cN.tex−1

UCL = x + A2R = 14.11 + (0.308 × 3.11) cN.tex−1 = 15.37 cN.tex−1

LCL = x − A2R = 14.11 − (0.308 × 3.11) cN.tex−1 = 13.45 cN.tex−1.

Figure 10.12 displays the mean chart for yarn strength. As shown, there are three
points that fall beyond the upper and lower control limits. It is therefore concluded
that the process average is out of control.

Now, the control limits for range chart are computed as follows. The values of D3

and D4 are obtained from Table 10.2.

CL = R = 3.11 cN.tex−1

UCL = D4R = 1.777 × 3.11 cN.tex−1 = 5.5 cN.tex−1

LCL = D3R = 0.223 × 3.11 cN.tex−1 = 0.69 cN.tex−1.

Figure 10.13 displays the range chart for yarn strength. There is no indication that
the range of yarn strength is out of control. It is therefore concluded that the process
variation is under control.

Now, the control limits for standard deviation chart are computed as follows. The
values of B3 and B4 are obtained from Table 10.2.
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Fig. 10.12 Mean chart for
yarn strength

Fig. 10.13 Range chart for
yarn strength

CL = s = 0.92 cN.tex−1

UCL = B4s = 1.716 × 0.92 cN.tex−1 = 1.58 cN.tex−1

LCL = B3s = 0.284 × 0.92 cN.tex−1 = 0.26 cN.tex−1.

Figure 10.14 displays the standard deviation chart for yarn strength. As shown, there
is no indication that the standard deviation of yarn strength is out of control. It is
once again confirmed that the process variation is out of control. It can be overall
concluded that although the process variability is in control, the process cannot be
regarded to be in statistical control since the process average is out of control.
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Fig. 10.14 Standard
deviation chart for yarn
strength

10.8 Process Capability Analysis

When the process is operating under control, we are often required to obtain some
information about the performance or capability of the process, that is, whether
a controlled process is capable of meeting the specifications. The capability of a
statistically controlled process is measured by process capability ratios. One of such
ratios is called Cp which is calculated when the process is running at center; that
is, the process is centered at nominal dimension. This is shown in Fig. 10.15. Cp is
defined as follows

Cp = USL − LSL

6σ

where USL and LSL stand for upper specification limit and lower specification limit,
respectively, and σ refers to the process standard deviation. 100(1/Cp) is interpreted
as the percentage of the specifications width used by the process.

Example 10.8 Suppose that the yarn manufacturing process is under control and
the specifications of yarn strength are given as 14.50 ± 4 cN.tex−1. As the process
standard deviation σ is not given, we need to estimate this as follows

σ̂ = R

d2
= 3.11

3.078
= 1.0104.

It is assumed that the sample size is 10 and the yarn strength follows normal distri-
bution with mean at 14.50 cN.tex−1 and standard deviation at 1.0104 cN.tex−1. The
process capability ratio is calculated as follows.

Cp = 18.5 − 10.5

6 × 1.0104
= 1.3196

That is, 75.78% of the specifications’ width is used by the process.
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Fig. 10.15 Display of
process centered at nominal
dimension

Sometimes, one-sided specification of a process is given; that is, either the upper
specification limit (USL) or the lower specification limit (LSL) is given, but not the
both are given. Then, we speak about two process capability ratios Cpu and Cpl . The
former is computed when the upper specification limit is known, and the latter is
calculated when the lower specification limit is given. They are defined as follows

Cpu = USL − μ

3σ

Cpl = μ − LSL

3σ

Example 10.9 Suppose the lower specification of yarn strength is given as 10.50
cN.tex−1. The process mean μ and process standard deviation σ were earlier esti-
mated as 14.50 cN.tex−1 and 1.0104 cN.tex−1, respectively. Then, the process capa-
bility ratio can be computed as follows
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Fig. 10.16 Display of
process running off-center

Cpl = μ − LSL

3σ
= 14.50 − 10.50

3 × 1.0104
= 1.32

We observed thatCp measures the capability of a centered process. But all processes
are not necessarily always centered at the nominal dimension. That is, processes may
also run off-center (Fig. 10.16), so that the actual capability of noncentered processes
will be less than that indicated by Cp. In the case when the process is running off-
center, the capability of a process is measured by another ratio called Cpk . This is
defined below

Cpk = min
[USL − μ

3σ
,
μ − LSL

3σ

]

It is often said that Cpk measures actual capability and Cp measures potential capa-
bility.

Example 10.10 Suppose the specifications of yarn strength are given as 14 ±
4 cN.tex−1.

We assume that the yarn strength follows normal distribution with mean at
14.50 cN.tex−1 and standard deviation at 1.0104 cN.tex−1. Clearly, the process is
running off-center.

Cpk = min
(18.5 − 14.5

3 × 1.0104
,
14.5 − 10.0

3 × 1.0104

)
= min(1.1547, 1.4846) = 1.1547

But there is a serious problem associated with Cpk . Let us illustrate this with the
help of an example. Suppose there are two processes—Process A and Process B.
Process A has a mean at 50 and standard deviation at 5. Process B has a mean at
57.5 and standard deviation at 2.5. The target is given as 50, and the upper and lower
specifications limits are set at 65 and 35, respectively. Then, it can be computed
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Table 10.5 Basic statistical
characteristics of processes C
and D

Process C D

Mean 100 110

Standard deviation 3 1

Table 10.6 Process
capability ratios of processes
C and D

Process capability
ratio

C D

Cp 1.11 3.33

Cpk 1.11 0

Cpm 1.11 3.33

that Process A has Cp = Cpk = 1. But Process B has different capability ratios:
Cp = 2 and Cpk = 1. It is very surprising to notice that both processes have the
same Cpk = 1; however, Process A is running at center, but Process B is running
off-center. This example suggests us that Cpk is not an adequate measure of process
centering. There is another process capability ratio Cpm , which is preferred over Cpk

for computation of process capability ratio when the process is running off-center.
Cpm is defined as follows

Cpm = USL − LSL

6τ

where τ is the square root of expected squared deviation from the target T =
1
2 (USL + LSL). It can be found that τ = 6

√
σ 2 + (μ − T )2. Then, Cpm can be

expressed as

Cpm = USL − LSL

6σ
√
1 + (

μ−T
σ

)2
= Cp√

1 + (
μ−T

σ
)2

.

Based on the above example of two processes A and B, it can be calculated that
Cpm for Process A is 1 and the same for Process B is 0.63. Clearly, Process B is
utilizing the specification width more than Process A. Hence, Process A is preferred
to Process B.

Example 10.11 The basic statistical characteristics of two processes (C and D) are
given in Table10.5.

Sample size is 5, and specifications are given at 100 ± 10. The earlier stated
process capability ratios are calculated and reported in Table 10.6.

As Process C is utilizing the specification width more than Process D, the former
is preferred to the latter.

Worldwide, a few guidelines are available for process capability ratios. They are as
follows: (1) Cp = 1.33 as a minimum acceptable target for many US companies, (2)
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Cp = 1.66 as a minimum target for strength, safety, and other critical characteristics
for many US companies, and (3) Cpk = 2 for many internal processes and also for
many suppliers.

10.9 Control Chart for Fraction Defectives

The fraction defective is defined as the ratio of the number of defectives in a popula-
tion to the total number of items in the population. Suppose the production process
is operating in a stable manner such that the probability that any item produced will
not conform to specifications is p and that successive items produced are indepen-
dent. Then, each item produced is a realization of a Bernoulli random variable with
parameter p. If a random sample of n items of product is selected and if D is the
number of items of product that are defectives, then D has a binomial distribution
with parameter n and p; that is

P(D = x) = nCx p
x (1 − p)n−x , x = 0, 1, . . . , n.

Themean and variance of the random variable D are np and np(1 − p), respectively.
The sample fraction defective is defined as the ratio of the number of defective items
in the sample of size n; that is p′ = D

n . The distribution of the random variable p′
can be obtained from the binomial distribution. The mean and variance of p′ are p
and p(1−p)

n , respectively.
When the mean fraction of defectives p of the population from which samples

are taken is known, then it follows as mentioned below.

CL = p, UCL = p + 3

√
p(1 − p)

n
, LCL = p − 3

√
p(1 − p)

n

When the mean fraction of defectives p of the population is not known then we find
out the control limits in the following manner.

Let us select m samples, each of size n. If there are Di defective items in i th
sample, then the fraction defectives in the i th sample are p′

i = Di
n , i = 1, 2, . . . ,m.

The average of these individual sample fraction defectives is

p′ =

m∑

i=1

Di

mn
=

m∑

i=1

p′
i

m

CL = p′, UCL = p′ + 3

√
p′(1 − p′)

n
, LCL = p′ − 3

√
p′(1 − p′)

n
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10.10 Control Chart for the Number of Defectives

It is also possible to base a control chart on the number of defectives rather than the
fraction defectives. When the mean number of defectives np of the population from
which samples are taken is known, then

CL = np, UCL = np + 3
√
np(1 − p), LCL = p − 3

√
np(1 − p)

When the mean number of defectives np of the population is not known, then

CL = n p′, UCL = n p′ + 3
√
n p′(1 − p′), LCL = p′ − 3

√
n p′(1 − p′)

Example 10.12 Table 10.7 refers to the number of defective knitwears in samples
of size 180.

Here, n = 180 and p′ = 423
30×180 = 0.0783. The control limits are

CL = n p′ = 14.09, UCL = n p′ + 3
√
n p′(1 − p′) = 24.9, LCL = p′ − 3

√
n p′(1 − p′) = 3.28

Figure 10.17 displays the control chart for number of defectives. It can be seen that
the knitwear manufacturing process is out of control.

Table 10.7 Data on defective knitwears

Sample no. No. of
defectives

Sample no. No. of
defectives

Sample no. No. of
defectives

1 5 11 36 21 24

2 8 12 24 22 17

3 10 13 19 23 12

4 12 14 13 24 8

5 12 15 5 25 17

6 29 16 2 26 19

7 25 17 11 27 4

8 13 18 8 28 9

9 9 19 15 29 5

10 20 20 20 30 12
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Fig. 10.17 Control chart for
the number of defective
knitwears

10.11 Control Chart for The Number of Defects

Consider the occurrence of defects in an inspection unit of product(s).1 Suppose that
defects occur in this inspection unit according to Poisson distribution; that is

P(x) = e−ccx

x ! , x = 0, 1, 2, . . .

where x is the number of defects and c is known as mean and/or variance of the
Poisson distribution.

When the mean number of defects c in the population from which samples are
taken is known, the control limits for the number of defects per unit of product are

CL = c, UCL = c + 3
√
c, LCL = c − 3

√
c

Note: If this calculation yields a negative value of LCL, then set LCL = 0.
When themean number of defects c in the population is not known, then it follows

as stated below. Let us select n samples. If there are ci defects in i th sample, then
the average of these defects in samples of size n is

c′ =

n∑

i=1

c′
i

n
, CL = c′, UCL = c′ + 3

√
c′, LCL = c′ − 3

√
c′

Note that if this calculation yields a negative value of LCL, then LCL can be set as
follows: LCL = 0.

Example 10.13 The following data set in Table 10.8 refers to the number of holes
(defects) in knitwears.

1It can be a group of 10 units of products or 50 units of products.
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Table 10.8 Data on number of defects in knitwears

Sample no. No. of holes Sample no. No. of holes Sample no. No. of holes

1 4 11 3 21 2

2 6 12 7 22 1

3 3 13 9 23 7

4 8 14 6 24 6

5 12 15 10 25 5

6 9 16 11 26 9

7 7 17 7 27 11

8 2 18 8 28 8

9 11 19 9 29 3

10 8 20 3 30 2

Fig. 10.18 Control chart for
number of defects in
knitwears

Consider c′
i denote the number of holes in i th sample. The control i limits are

calculated as follows.

CL = nc′ = 6.57, UCL = nc′ + 3
√
nc′(1 − c′) = 14.26, LCL = c′ − 3

√
nc′(1 − c′) = −1.12.

Figure 10.18 displays the control chart for number of defects. It can be seen that the
knitwear manufacturing process is under control.

10.12 CUSUM Control Chart

The Shewhart control charts discussed earlier have a serious disadvantage. They are
known to be relatively insensitive to the small shifts in the process mean, say in the
order of about 1.5σ or less. In such cases, a very effective alternative is cumulative
sum control chart, or in short, CUSUM control chart.
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Let us now obtain the CUSUM control chart for the same data as reported in
Table 10.9. The step-by-step procedure to obtain CUSUM control chart is given
below.

The cumulative sum (CUSUM) of observations is defined as

Ci =

⎧
⎪⎪⎨

⎪⎪⎩

i∑

j=1

(x j − μ) = (xi − μ) +
i−1∑

j=1

(x j − μ) = (xi − μ) + Ci−1; when i ≥ 1

C0 = 0; when i = 0

When the process remains in control with mean μ, the cumulative sum is a random
walk with mean zero. When the mean shifts upward to a value μ0 such that μ > μ0,
then an upward or positive drift will be developed in the cumulative sum. When
the mean shifts downward with a value μ0 such that μ < μ0, then a downward or
negative drift will be developed in the CUSUM.

There are two ways to represent CUSUM, the tabular (algorithmic) CUSUM and
V-mask. Of the two, the tabular CUSUM is preferable. We will now present the
construction and use of tabular CUSUM.

The tabular CUSUMworks by accumulating deviations from μ (the target value)
that are above the target with one statistic C+ and accumulating deviations from μ

(the target value) that are below the target with another statistic C−. These statistics
are called as upper CUSUM and lower CUSUM, respectively.

Upper CUSUM: C+
i =

⎧
⎪⎨

⎪⎩

i∑

j=1

max[0, xi − (μ + K ) + C+
i−1]; when i ≥ 1

C+
0 = 0; when i = 0

Lower CUSUM: C−
i =

⎧
⎪⎨

⎪⎩

i∑

j=1

max[0, xi − (μ + K ) + C−
i−1]; when i ≥ 1

C−
0 = 0; when i = 0

where K is called as reference value or the allowance.
If the shift δ in the process mean value is expressed as

δ = |μ1 − μ|
σ

where μ1 denotes the new process mean value and μ and σ indicate the old process
mean value and the old process standard deviation, respectively, then K is the one-
half of the magnitude of shift.

K = δ

2
σ = |μ1 − μ|

2
.
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Fig. 10.19 Shewhart mean
control chart for yarn
strength data of Table 10.9

If either C+
i or C−

i exceeds a chosen decision interval H , the process is considered
to be out of control. A reasonable value for H is five times the process standard
deviation, H = 5σ .

Although we have discussed the development of CUSUM chart for individual
observations (n = 1), it is easily extended to the case of averages of samples where
(n > 1). In such a case, simply replace xi by xi and σ by σ√

n
.

We have concentrated on CUSUMs for sample averages. However, it is possible
to develop CUSUMs for other sample statistics such as ranges, standard deviations,
number of defectives, proportion of defectives, and number of defects.

Example 10.14 Consider the yarn strength (cN.tex−1) data as shown in Table 10.9.

Let us, for curiosity, obtain the Shewhart mean control chart of the data reported in
Table 10.9. The control limits are calculated as follows.

CL = μ[
cN.tex−1

] = 10

UCL = μ[
cN.tex−1

] + 3σ[
cN.tex−1

] = 10 + (3 × 1) = 13

LCL = μ[
cN.tex−1

] − 3σ[
cN.tex−1

] = 10 − (3 × 1) = 7.

The Shewhart control chart is plotted in Fig. 10.19. It can be observed that the process
mean is under control.

The definition of CUSUM is followed to obtain Table 10.10. Figure 10.20 plots
CUSUM for different samples. It can be seen that the CUSUM increases rapidly after
sample number 20. This information was however not obtained from the Shewhart
control chart.

Let us illustrate how tabular CUSUM is obtained. Table 10.11 reports on the
procedure for obtaining the upper CUSUM.Here, the counter N+ records the number
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Table 10.9 Yarn strength data for CUSUM control chart

Sample no. i Strength xi (cN.tex−1) Sample no. i Strength xi (cN.tex−1)

1 10.29 16 10.65

2 8.66 17 8.8

3 10.61 18 10.2

4 12.03 19 10

5 9.31 20 10.1

6 10.86 21 10.1

7 11.2 22 10.95

8 8.4 23 11.1

9 8.5 24 12.6

10 10.55 25 9.5

11 9.5 26 12

12 10.69 27 11.2

13 10.7 28 9.7

14 8.7 29 11.75

15 10.29 30 11.07

Table 10.10 Calculations of CUSUM

i xi (cN.tex−1) Ci (cN.tex−1) i xi (cN.tex−1) Ci (cN.tex−1)

1 10.29 0.29 16 10.65 0.94

2 8.66 −1.05 17 8.8 −0.26

3 10.61 −0.43 18 10.2 −0.06

4 12.03 1.6 19 10 −0.06

5 9.31 0.91 20 10.1 0.04

6 10.86 1.76 21 10.1 0.14

7 11.2 2.96 22 10.95 1.09

8 8.4 1.36 23 11.1 2.19

9 8.5 −0.14 24 12.6 4.79

10 10.55 0.41 25 9.5 4.29

11 9.5 −0.09 26 12 6.29

12 10.69 0.6 27 11.2 7.49

13 10.7 1.3 28 9.7 7.19

14 8.7 0 29 11.75 8.94

15 10.29 0.29 30 11.07 10.01
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Fig. 10.20 Plots of CUSUM
for different samples

Table 10.11 Calculations of upper CUSUM

i[−] x
i(cN.tex−1

)
C+
i(cN.tex−1

)
N+

[−] i[−] x
i(cN.tex−1

)
C+
i(cN.tex−1

)
N+

[−]
1 10.29 0 0 16 10.65 0.15 1

2 8.66 0 0 17 8.8 0 0

3 10.61 0.11 1 18 10.2 0 0

4 12.03 1.64 2 19 10 0 0

5 9.31 0.45 3 20 10.1 0 0

6 10.86 0.81 4 21 10.1 0 0

7 11.2 1.51 5 22 10.95 0.45 1

8 8.4 0 0 23 11.1 1.05 2

9 8.5 0 0 24 12.6 3.15 3

10 10.55 0.05 1 25 9.5 2.15 4

11 9.5 0 0 26 12 3.65 5

12 10.69 0.19 1 27 11.2 4.35 6

13 10.7 0.39 1 28 9.7 3.55 7

14 8.7 0 0 29 11.75 4.8 8

15 10.29 0 0 30 11.07 5.37 9

of successive points since C+
i rose above the value of zero. Table 10.12 reports on

the procedure for obtaining the lower CUSUM. Here, the counter N− records the
number of successive points since C−

i rose above the value of zero.
Figure 10.21 plots the CUSUM status chart. It can be observed that the process

mean is out of control.Althoughwehave discussed the development ofCUSUMchart
for individual observations (n = 1), it is easily extended to the case of averages of
samples where (n > 1). Simply replace xi by x̄i and σ by σ√

n
. We have concentrated

on CUSUMs for sample averages; however, it is possible to develop CUSUMs for
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Table 10.12 Calculations of lower CUSUM

i[−] x
i(cN.tex−1

)
C+
i(cN.tex−1

)
N+

[−] i[−] x
i(cN.tex−1

)
C+
i(cN.tex−1

)
N+

[−]
1 10.29 0 0 16 10.65 0 0

2 8.66 0.84 1 17 8.8 0.7 1

3 10.61 0 0 18 10.2 0 0

4 12.03 0 0 19 10 0 0

5 9.31 0.19 1 20 10.1 0 0

6 10.86 0 0 21 10.1 0 0

7 11.2 0 0 22 10.95 0 0

8 8.4 1.1 1 23 11.1 0 0

9 8.5 2.1 2 24 12.6 0 0

10 10.55 1.05 3 25 9.5 0 0

11 9.5 1.05 4 26 12 0 0

12 10.69 0 0 27 11.2 0 0

13 10.7 0 0 28 9.7 0 0

14 8.7 0.8 1 29 11.75 0 0

15 10.29 0.01 2 30 11.07 0 0

Fig. 10.21 Plot of CUSUM
status chart

other sample statistics such as ranges, standard deviations, number of defectives,
proportion of defectives, and number of defects.

10.13 Exponentially Weighted Moving Average Control
Chart

Exponentially weighted moving average (or, in short, EWMA) control chart is
another good alternative to Shewhart control chart in detecting small shifts in
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process mean. As with the CUSUM control chart, the EWMA control chart is typi-
cally used for individual observations. And the performance of the EWMA control
chart is approximately same as that of the CUSUM control chart.

10.13.1 Basics of EWMA

EWMA is defined by zi = λxi + (1 − λ)zi−1, where i denotes sample number, and
λ ∈ (0, 1] is a constant and the starting value which is required with the first sample
is the process target so that z0 = μ0. Sometimes, the average of preliminary data is
used as the starting value of the EWMA, so that z0 = x̄ .

Let us now discuss why the EWMA zi is called the weighted average of all
previous sample means. We substitute for zi−1 on the right-hand side of the above
definition of EWMA and obtain the following

zi = λxi + (1 − λ)zi−1 = λxi + (1 − λ)(λxi−1 + (1 − λ)zi−2)

= λxi + λ(1 − λ)xi−1 + (1 − λ)2[λxi−2 + (1 − λ)zi−3] = λ

i−1∑

j=0

(1 − λ) j xi− j + (1 − λ)i z0.

Here, the weights γ (1 − λ) j decrease geometrically with the age of sample mean.
That is why the EWMA is sometimes also called geometric moving average.

10.13.2 Construction of EWMA Control Chart

EWMA control chart is obtained by plotting zi against sample number i (or time).
The center line and control limits for EWMA control chart are as follows

Center line : μ0

Upper Control Limit(UCL) : μ0 + Lσ

√
λ

(2 − λ)

[
1 − (1 − λ)2i

]

Lower Control Limit(LCL) : μ0 − Lσ

√
λ

(2 − λ)

[
1 − (1 − λ)2i

]

where L is the width of the control limits. We will discuss the effect of choice of the
parameters L and λ on the EWMA control chart later on.

Example 10.15 Let us consider the yarn strength data as shown in Table 10.13.
Let us now construct the EWMA control chart with λ = 0.1 and L = 2.7 for the

yarn strength (cN.tex−1) data as shown in Table 10.13. We consider that the target
value of the mean μ0 = 10 cN.tex−1 and standard deviation σ = 1 cN.tex−1. The
calculations for the EWMA control chart are shown in Table 10.14.
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Table 10.13 Yarn strength data

Sample no.
i

Strength
xi (cN.tex−1)

Sample no.
i

Strength
xi (cN.tex−1)

1 10.29 16 10.65

2 8.66 17 8.8

3 10.61 18 10.2

4 12.03 19 10

5 9.31 20 10.1

6 10.86 21 10.1

7 11.2 22 10.95

8 8.4 23 11.1

9 8.5 24 12.6

10 10.55 25 9.5

11 9.5 26 12

12 10.69 27 11.2

13 10.7 28 9.7

14 8.7 29 11.75

15 10.29 30 11.07

Table 10.14 Calculations for EWMA control chart

Sample no.
i

Strength
x − i
(cN.tex−1)

EWMA zi
(cN.tex−1)

Sample no.
i

Strength
xi (cN.tex−1)

EWMA zi
(cN.tex−1)

1 10.29 10.029 16 10.65 10.0442

2 8.66 9.8921 17 8.8 9.9197

3 10.61 9.9639 18 10.2 9.9478

4 12.03 10.1705 19 10 9.953

5 9.31 10.0845 20 10.1 9.9677

6 10.86 10.162 21 10.1 9.9809

7 11.2 10.2658 22 10.95 10.0778

8 8.4 10.0792 23 11.1 10.1801

9 8.5 9.9213 24 12.6 10.422

10 10.55 9.9842 25 9.5 10.3298

11 9.5 9.9358 26 12 10.4969

12 10.69 10.0112 27 11.2 10.5672

13 10.7 10.0801 28 9.7 10.4805

14 8.7 9.9421 29 11.75 10.6074

15 10.29 9.9768 30 11.07 10.6537
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To illustrate the calculations, consider the first observation x1 = 10.29. The
first value of EWMA is z1 = λx1 + (1 − λ)z0 = (0.1 × 10.29) + (1 − 0.1) × 10 =
10.029. Similarly, the second value of EWMA is z2 = λx2 + (1 − λ)z1 = (0.1 ×
8.66) + (1 − 0.1) × 10.029 = 9.8921. In this way, the other values of the EWMA
are calculated.

The upper control limits are calculated by using the following formula

μ0 + Lσ

√
λ

(2 − λ)

[
1 − (1 − λ)2i

]

For sample number 1, the upper control limit (UCL) is

μ0 + Lσ

√
λ

(2 − λ)

[
1 − (1 − λ)2i

] = 10 + 2.7 × 1

√
0.1

(2 − 0.1)

[
1 − (1 − 0.1)2×1

] = 10.27.

and the lower control limit (LCL) is

μ0 − Lσ

√
λ

(2 − λ)

[
1 − (1 − λ)2i

] = 10 − 2.7 × 1

√
0.1

(2 − 0.1)

[
1 − (1 − 0.1)2×1

] = 9.73.

For sample number 2, the upper control limit (UCL) is

μ0 + Lσ

√
λ

(2 − λ)

[
1 − (1 − λ)2i

] = 10 + 2.7 × 1

√
0.1

(2 − 0.1)

[
1 − (1 − 0.1)2×2

] = 10.3632.

For sample number 2, the lower control limit (LCL) is

μ0 − Lσ

√
λ

(2 − λ)

[
1 − (1 − λ)2i

] = 10 − 2.7 × 1

√
0.1

(2 − 0.1)

[
1 − (1 − 0.1)2×2

] = 9.6368.

In this way, the upper and lower control limits for other sample numbers are calcu-
lated. The EWMA control chart with λ = 0.1 and L = 2.7 is shown in Fig. 10.22. It
can be seen that the control limits increase in width as i increases from i = 1, 2, . . .
until they stabilize later on. The EWMA value at sample number 30 falls beyond the
upper control limit; hence, we conclude that the process is out of statistical control.

10.13.3 Choice of L and λ

Let us now see the effects of the choice of L and λ on the EWMA control chart. We
fix λ at 0.1 but increase L from 2.7 to 3. We calculated the values of the EWMA and
the control limits for sample numbers from 1 to 30. Figure10.23 displays the EWMA
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Fig. 10.22 EWMA control
chart with λ = 0.1 and
L = 2.7

Fig. 10.23 EWMA control
chart with λ = 0.1 and
L = 3

control chart with λ = 0.1 and L = 3. Here, there is no single point of EWMA that
falls beyond the control limits. The process is under statistical control. The increase
of width of the control charts resulted in statistical control of the process.

We now fix L at 3 and increase λ from λ = 0.1 to λ = 0.2. Accordingly, we
calculated the values of the EWMA and the control limits for sample numbers from
1 to 30. Figure10.24 displays the EWMA control chart with λ = 0.2 and L = 3.
Here, there is no single point of EWMA that falls beyond the control limits. It can
be observed that this resulted in further increase of the width of the control limits.

We then change from λ = 0.2 to λ = 0.05. The corresponding EWMA control
chart is obtained as shown in Fig. 10.25. As expected, the width of the control limits
decreases and there are many points falling beyond the upper and lower control
limits. The process is then said to be out of statistical control.

It is thus observed that the choices of λ and L are very critical as far as the
EWMA is concerned. In general, it is found that λ works reasonably well in the
interval 0.05 ≤ λ ≤ 0.25. The popular choices have been λ = 0.05, λ = 0.10, and
λ = 0.20. A good rule of thumb is to use smaller values of λ to detect smaller shifts.
L = 3 (three-sigma limit) works reasonably well, particularly with the larger values
of λ. When λ is small, say λ ≤ 0.1, there is an advantage in reducing the width of the
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Fig. 10.24 EWMA control
chart with λ = 0.2 and
L = 3

Fig. 10.25 EWMA control
chart with λ = 0.05 and
L = 3

limits by using a value of L between about 2.6 and 2.8. Like the CUSUM, the EWMA
performs well against small shifts but it does not react to large shifts as quickly as
the Shewhart chart. However, the EWMA is often considered to be superior to the
CUSUM for large shifts, particularly if λ > 0.10.

Problems

10.1 A company uses the following acceptance sampling procedure. A batch is
accepted if not more than two items are found to be defective in a sample of 50
items taken randomly from the batch; otherwise, the batch is rejected. If 500 batches
obtained from a process that manufactures 2% defective items are submitted to this
plan, how many batches are accepted?

10.2 Design an acceptance sampling plan for which AQL is 0.05, RQL is 0.05, α
is 0.05, and β is 0.05.
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Table 10.15 Data for Problem 10.9

Sample no. Thickness (mm)

1 1 1.4 1.5 1.8 1.2

2 1.4 1.3 1.7 1.9 2

3 1.1 1.5 1.6 1.4 1.8

4 1.2 1.4 1.7 1.8 1.4

5 1.2 1.6 1.8 1.4 2

6 1.4 1.2 1.6 1.8 1.5

7 1.8 1.6 1.4 2 1.8

8 1.2 1.8 1.9 2.2 1.8

9 2 1.8 2.4 1.6 1.4

10 1.9 2.4 1.6 1.8 2.4

10.3 Design an acceptance sampling plan for which AQL is 0.05, RQL is 0.05, α
is 0.05, and β is 0.10.

10.4 Design an acceptance sampling plan for which AQL is 0.05, RQL is 0.05, α
is 0.10, and β is 0.05.

10.5 Design an acceptance sampling plan for which AQL is 0.05, RQL is 0.05, α
is 0.05, and β is 0.10.

10.6 Design an acceptance sampling plan for which AQL is 0.05, RQL is 0.10, α
is 0.05, and β is 0.05.

10.7 Design an acceptance sampling plan for which AQL is 0.10, RQL is 0.05, α
is 0.05, and β is 0.05.

10.8 A ball bearing manufacturing company supplies bearing of inner ring diameter
equal to be 50 mm. A customer accepts bearing if its mean diameter lies within a
range of 50 ± 0.002 mm. As the customer cannot test all the bearings supplied by
the supplier, the customer would like to devise an acceptance sampling scheme with
5% producer’s risk and 5% consumer’s risk. Consider that the inner ring diameter of
the bearing follows normal distribution with standard deviation of 0.001 mm.

10.9 A machine is manufacturing compact disks with thickness shown in Table
10.15. Set up an x chart, R chart, and s chart, and comment on whether the manu-
facturing process is under statistical control.

10.10 The mean, range, and standard deviation of weight of 10 samples of size 9
taken from a manufacturing process are shown in Table 10.16.

(a) Compute 3σ control limits for the mean, range, and standard deviation charts
on this process.
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Table 10.16 Data for Problem 10.10

Sample number Mean (g.m−2) Range (g.m−2) Standard deviation
(g.m−2)

1 253.46 17.12 5.47

2 249.54 19.04 7.05

3 257.76 29.12 9.72

4 250.56 22.56 7.37

5 254.46 20.48 6.44

6 248.77 20.96 8.32

7 250.15 20.8 6.87

8 253.04 22.88 7

9 254.16 14.72 5.18

10 250.34 16.96 6.75

Table 10.17 Data for Problem 10.12

Process Characteristics

Mean (lb.in−2) Standard deviation
(lb.in−2)

A 50 2

B 55 1

(b) If the specifications on this weight are 250 ± 25 g.m−2, what conclusion would
you draw about the capability of this process?

(c) What proportion ofmaterials produced by this process is likely to bewithin these
specifications? Assume the weight of the material follows normal distribution.

10.11 A tire manufacturing company receives an order for a large quantity of tires
with mean breaking energy 1000 J and standard deviation of breaking energy 10 J.
The company wants to establish a control chart for mean breaking energy of tire
based on the aforesaid parameters and samples of size 9 such that the probability
of rejecting good tires produced by a statistically controlled process is 0.01. Under
this situation can you find out what are the upper and lower control limits for mean
breaking energy of tire?

10.12 Consider two manufacturing processes for production of malleable iron cast-
ings, and the mean and standard deviation of the tensile strength of the castings
resulting from these processes are shown in Table 10.17.

The specifications on the iron casting tensile strength are given as 50 ± 10 lb.in2.

(a) Estimate the potential capability and the actual capability of these processes.
(b) Which of the two processes would you prefer to use and why?
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Table 10.18 Data for Problem 10.13

Sample no. No. of
defectives

Sample no. No. of
defectives

Sample no. No. of
defectives

1 2 11 24 21 2224

2 4 12 14 22 67

3 9 13 9 23 12

4 11 14 14 24 17

5 7 15 2 25 14

6 15 16 1 26 14

7 25 17 1 27 3

8 17 18 18 28 7

9 8 19 5 29 6

10 4 20 18 30 14

Table 10.19 Data for Problem 10.14

Lot no. 1 2 3 4 5 6 7 8 9 10

No. of inspected
items

100 200 100 500 800 900 400 700 900 700

No. of defective
items

19 16 7 43 77 86 33 53 86 91

10.13 Table 10.18 displays the number of defective bearings found in each sample
of size 200.

(a) Compute a 3σ control limits for the number of defectives.
(b) Display the control chart.
(c) Analyze the patterns of data in the control chart, and comment on whether the

bearing manufacturing process is under control or out of control.

10.14 Construct an appropriate control chart for the data given in Table 10.19, and
comment on whether the process is under statistical control.

10.15 In a production process, a sample of 50 items is inspected on each day. The
number of defective found in each sample is as follows: 1, 3, 4, 7, 9, 6, 13, 2, 5, 6.
Draw an appropriate control chart and check for control.

10.16 The number of defects in twenty pieces of vertical blind each of 10m length is
as follows: 1, 3, 2, 5, 2, 4, 3, 2, 1, 3, 2, 4, 6, 3, 5, 1, 1, 2, 2, 3.Drawan appropriate control
chart, and conclude whether the process can be considered to be under statistical
control.
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Table 10.20 Data for Problem 10.17

Roll num-
ber

1 2 3 4 5 6 7 8 9 10

Number
of defects

12 10 8 9 12 10 11 9 11 8

Table 10.21 Data for Problem 10.18

Car no. 1 2 3 4 5 6 7 8 9 10

Number
of defects

3 7 5 6 3 1 2 8 8 6

Table 10.22 Data for Problem 10.19

61 66 61 63 64

63 67 68 61 63

62 64 69 68 64

68 68 70 67 62

64 64 65 69 65

10.17 A cloth manufacturer examines ten rolls of clothes each with 100 m length
of cloth and counts the number of defects present in each roll. The results are shown
in Table 10.20.

Can you design a 3σ control chart for defects and conclude whether the fabrics
have been produced by a statistically controlled process?

10.18 An automotive company inspects the defects in ten cars, and the results are
shown in Table 10.21. Set up an appropriate control chart, and conclude if the man-
ufacturing process of the cars is under statistical control.

10.19 The data of Table 10.22 represent temperature (◦C) of a chemical process
recorded every 5min (read down from left).

The target process mean temperature is 65 ◦C, and the process standard deviation
is 3 ◦C. Set up a tabular CUSUM for this process, using H = 5 and K = 0.5.

10.20 The concentration (ppm) of a bath, measured on hourly basis for 20h, is
shown in Table 10.23 (read down from left). The target process mean concentration
is 80 ppm, and the process standard deviation is 2.5 ppm. Set up a tabular CUSUM
for this process, using H = 5 and K = 0.5.
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Table 10.23 Data for Problem 10.20

84 80 83 78

82 82 84 80

81 78 81 74

79 76 82 79

78 80 80 79

10.21 Consider the data given inProblemNo. 11.20 and construct anEWMAcontrol
chart with λ = 0.1 and L = 2.7. Compare your results to those obtained with the
CUSUM control chart.

Reference

Montgomery DC (2001) Introduction to statistical quality control. Wiley, New York



Appendix A
Statistical Tables

1. Cumulative binomial probabilities (TablesA.1, A.2)
2. Cumulative Poisson probabilities (TablesA.3, A.4, A.5)
3. Cumulative distribution function for the standard normal distribution (TablesA.6,

A.7)
4. Critical values for the chi-square distribution (TablesA.8, A.9)
5. Critical values for the student’s t distribution (TableA.10)
6. Critical values for the F distribution (TablesA.11, A.12, A.13)
7. Critical values dn,α for the Kolmogorov–Smirnov test (TableA.14)
8. Critical values for the Wilcoxon signed-rank test (TableA.15)
9. Percentage points of the studentized range statistic (TablesA.16, A.17)

© Springer Nature Singapore Pte Ltd. 2018
D. Selvamuthu and D. Das, Introduction to Statistical Methods,
Design of Experiments and Statistical Quality Control,
https://doi.org/10.1007/978-981-13-1736-1
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Table A.3 Cumulative distribution function for Poisson random variable, P(μ)

μ

x 0.05 0.10 0.15 0.20 0.26 0.30 0.35 0.40 0.45 0.50

0 0.9512 0.9048 0.8607 0.8187 0.7788 0.7408 0.7047 0.6703 0.6376 0.6065

1 0.9988 0.9953 0.9898 0.9825 0.9735 0.9631 0.9513 0.9384 0.9246 0.9098

2 1.0000 0.9998 0.9995 0.9989 0.9978 0.9964 0.9945 0.9921 0.9891 0.9856

3 1.0000 1.0000 0.9999 0.9999 0.9997 0.9995 0.9992 0.9988 0.9982

4 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999 0.9998

5 1.0000 1.0000 1.0000

μ

x 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0 0.5769 0.5488 0.5220 0.4966 0.4724 0.4493 0.4274 0.4066 0.3867 0.3679

1 0.8943 0.8781 0.8614 0.8442 0.8266 0.8088 0.7907 0.7725 0.7541 0.7358

2 0.9815 0.9769 0.9717 0.9659 0.9595 0.9526 0.9451 0.9371 0.9287 0.9197

3 0.9975 0.9966 0.9956 0.9942 0.9927 0.9909 0.9889 0.9865 0.9839 0.9810

4 0.9997 0.9996 0.9994 0.9992 0.9989 0.9986 0.9982 0.9977 0.9971 0.9963

5 1.0000 1.0000 0.9999 0.9999 0.9999 0.9998 0.9997 0.9997 0.9995 0.9994

6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999

7 1.0000 1.0000

μ

x 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

0 0.3329 0.3012 0.2725 0.2466 0.2231 0.2019 0.1827 0.1653 0.1496 0.1353

1 0.6990 0.6626 0.6268 0.5918 0.5578 0.5249 0.4932 0.4628 0.4337 0.4060

2 0.9004 0.8795 0.8571 0.8335 0.8088 0.7834 0.7572 0.7306 0.7037 0.6767

3 0.9743 0.9662 0.9569 0.9463 0.9344 0.9212 0.9068 0.8913 0.8747 0.8571

4 0.9946 0.9923 0.9893 0.9857 0.9814 0.9763 0.9704 0.9636 0.9559 0.9473

5 0.9990 0.9985 0.9978 0.9968 0.9955 0.9940 0.9920 0.9896 0.9868 0.9834

6 0.9999 0.9997 0.9996 0.9994 0.9991 0.9987 0.9981 0.9974 0.9966 0.9955

7 1.0000 1.0000 0.9999 0.9999 0.9998 0.9997 0.9996 0.9994 0.9992 0.9989

8 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999 0.9998 0.9998

9 1.0000 1.0000 1.0000 1.0000 1.0000
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Table A.4 Cumulative distribution function for Poisson random variable, P(μ) (Continued)

μ

x 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

0 0.1225 0.1108 0.1003 0.0907 0.0821 0.0743 0.0672 0.0608 0.0550 0.0498

1 0.3796 0.3546 0.3309 0.3084 0.2873 0.2674 0.2487 0.2311 0.2146 0.1991

2 0.6496 0.6227 0.5960 0.5697 0.5438 0.5184 0.4936 0.4695 0.4460 0.4232

3 0.8386 0.8194 0.7993 0.7787 0.7576 0.7360 0.7141 0.6919 0.6696 0.6472

4 0.9379 0.9275 0.9162 0.9041 0.8912 0.8774 0.8629 0.8477 0.8318 0.8153

5 0.9796 0.9751 0.9700 0.9643 0.9580 0.9510 0.9433 0.9349 0.9258 0.9161

6 0.9941 0.9925 0.9906 0.9884 0.9858 0.9828 0.9794 0.9756 0.9713 0.9665

7 0.9985 0.9980 0.9974 0.9967 0.9958 0.9947 0.9934 0.9919 0.9901 0.9881

8 0.9997 0.9995 0.9994 0.9991 0.9989 0.9985 0.9981 0.9976 0.9969 0.9962

9 0.9999 0.9999 0.9999 0.9998 0.9997 0.9996 0.9995 0.9993 0.9991 0.9989

10 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999 0.9999 0.9998 0.9998 0.9997

11 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999

12 1.0000 1.0000

μ

x 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0

0 0.0450 0.0408 0.0369 0.0334 0.0302 0.0273 0.0247 0.0224 0.0202 0.0183

1 0.1847 0.1712 0.1586 0.1468 0.1359 0.1257 0.1162 0.1074 0.0992 0.0916

2 0.4012 0.3799 0.3594 0.3397 0.3208 0.3027 0.2854 0.2689 0.2531 0.2381

3 0.6248 0.6025 0.5803 0.5584 0.5366 0.5152 0.4942 0.4735 0.4532 0.4335

4 0.7982 0.7806 0.7626 0.7442 0.7254 0.7064 0.6872 0.6678 0.6484 0.6288

5 0.9057 0.8946 0.8829 0.8705 0.8576 0.8441 0.8301 0.8156 0.8006 0.7851

6 0.9612 0.9554 0.9490 0.9421 0.9347 0.9267 0.9182 0.9091 0.8995 0.8893

7 0.9858 0.9832 0.9802 0.9769 0.9733 0.9692 0.9648 0.9599 0.9546 0.9489

8 0.9953 0.9943 0.9931 0.9917 0.9901 0.9883 0.9863 0.9840 0.9815 0.9786

9 0.9986 0.9982 0.9978 0.9973 0.9967 0.9960 0.9952 0.9942 0.9931 0.9919

10 0.9996 0.9995 0.9994 0.9992 0.9990 0.9987 0.9984 0.9981 0.9977 0.9972

11 0.9999 0.9999 0.9998 0.9998 0.9997 0.9996 0.9995 0.9994 0.9993 0.9991

12 1.0000 1.0000 1.0000 0.9999 0.9999 0.9999 0.9999 0.9998 0.9998 0.9997

13 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999

14 1.0000 1.0000
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Table A.5 Cumulative distribution function for Poisson random variable, P(μ) (Continued)

μ

x 5 6 7 8 9 10 15 20 25 30

0 0.0067 0.0025 0.0009 0.0003 0.0001 0.0000

1 0.0404 0.0174 0.0073 0.0030 0.0012 0.0005

2 0.1247 0.0620 0.0296 0.0138 0.0062 0.0028 0.0000

3 0.2650 0.1512 0.0818 0.0424 0.0212 0.0103 0.0002

4 0.4405 0.2851 0.1730 0.0996 0.0550 0.0293 0.0009 0.0000

5 0.6160 0.4457 0.3007 0.1912 0.1157 0.0671 0.0028 0.0001

6 0.7622 0.6063 0.4497 0.3134 0.2068 0.1301 0.0076 0.0003

7 0.8666 0.7440 0.5987 0.4530 0.3239 0.2202 0.0180 0.0008 0.0000

8 0.9319 0.8472 0.7291 0.5925 0.4557 0.3328 0.0374 0.0021 0.0001

9 0.9682 0.9161 0.8305 0.7166 0.5874 0.4579 0.0699 0.0050 0.0002

10 0.9863 0.9574 0.9015 0.8159 0.7060 0.5830 0.1185 0.0108 0.0006 0.0000

11 0.9945 0.9799 0.9467 0.8881 0.8030 0.6968 0.1848 0.0214 0.0014 0.0001

12 0.9980 0.9912 0.9730 0.9362 0.8758 0.7916 0.2676 0.0390 0.0031 0.0002

13 0.9993 0.9964 0.9872 0.9658 0.9261 0.8645 0.3632 0.0661 0.0065 0.0004

14 0.9998 0.9986 0.9943 0.9827 0.9585 0.9165 0.4657 0.1049 0.0124 0.0009

15 0.9999 0.9995 0.9976 0.9918 0.9780 0.9513 0.5681 0.1565 0.0223 0.0019

16 1.0000 0.9998 0.9990 0.9963 0.9889 0.9730 0.6641 0.2211 0.0377 0.0039

17 0.9999 0.9996 0.9984 0.9947 0.9857 0.7489 0.2970 0.0605 0.0073

18 1.0000 0.9999 0.9993 0.9976 0.9928 0.8195 0.3814 0.0920 0.0129

19 1.0000 0.9997 0.9989 0.9965 0.8752 0.4703 0.1336 0.0219

20 0.9999 0.9996 0.9984 0.9170 0.5591 0.1855 0.0353

21 1.0000 0.9998 0.9993 0.9469 0.6437 0.2473 0.0544

22 0.9999 0.9997 0.9673 0.7206 0.3175 0.0806

23 1.0000 0.9999 0.9805 0.7875 0.3939 0.1146

24 1.0000 0.9888 0.8432 0.4734 0.1572

25 0.9938 0.8878 0.5529 0.2084

26 0.9967 0.9221 0.6294 0.2673

27 0.9983 0.9475 0.7002 0.3329

28 0.9991 0.9657 0.7634 0.4031

29 0.9996 0.9782 0.8179 0.4757

30 0.9998 0.9865 0.8633 0.5484

31 0.9999 0.9919 0.8999 0.6186

32 1.0000 0.9953 0.9285 0.6845

33 0.9973 0.9502 0.7444

34 0.9985 0.9662 0.7973

35 0.9992 0.9775 0.8426

36 0.9996 0.9854 0.8804

37 0.9998 0.9998 0.9110

38 0.9999 0.9943 0.9352

(continued)
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Table A.5 (continued)

μ

x 5 6 7 8 9 10 15 20 25 30

39 0.9999 0.9966 0.9537

40 1.0000 0.9980 0.9677

41 0.9988 0.9779

42 0.9993 0.9852

43 0.9996 0.9903

44 0.9998 0.9937



408 Appendix A: Statistical Tables

Table A.6 Cumulative distribution function for the standard normal random variable
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Table A.7 Cumulative distribution function for the standard normal random variable (Continued)

Z 0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0. 7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 0.8889 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993

3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995

3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997

3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

Critical values, P(Z ≥ zα) = α

α 0.10 0.05 0.025 0.01 0.005 0.001 0.0005 0.0001

zα 1.2816 1.6449 1.9600 2.3263 2.5758 3.0902 3.2905 3.7190

α 0.00009 0.00008 0.00007 0.00006 0.00005 0.00004 0.00003 0.00002 0.00001

zα 3.7455 3.7750 3.8082 3.8461 3.8906 3.9444 4.0128 4.1075 4.2649
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Table A.8 Critical values for the chi-square distribution (This table contains critical values χ2
α,ν

for the chi-square distribution defined by P(χ2 ≥ χ2
α,ν) = α)

α

ν 0.9999 0.9995 0.999 0.995 0.99 0.975 0.95 0.90

1 0.07157 0.06393 0.05157 0.04393 0.0002 0.0010 0.0039 0.0158

2 0.0002 0.0010 0.0020 0.0100 0.0201 0.0506 0.1026 0.2107

3 0.0052 0.0153 0.0243 0.0717 0.1148 0.2158 0.3518 0.5844

4 0.0284 0.0639 0.0908 0.2070 0.2971 0.4844 0.7107 10.0636

5 0.0822 0.1581 0.2102 0.4117 0.5543 0.8312 1.1455 1.6103

6 0.1724 0.2994 0.3811 0.6757 0.8721 1.2373 1.6354 2.2041

7 0.3000 0.4849 0.05985 0.9893 1.2390 1.6899 2.1673 2.8331

8 0.4636 0.7104 0.8571 1.3444 1.6465 2.1797 2.7326 3.4895

9 0.6608 0.9717 1.1519 1.7349 2.0879 2.7004 3.3251 4.1682

10 0.8889 1.2650 1.4787 2.1559 2.5582 3.2470 3.9403 4.8652

11 1.1453 1.5868 1.8339 2.6032 3.0535 3.8157 4.5748 5.5778

12 1.4275 1.9344 2.2142 3.0738 3.5706 4.4038 5.2260 6.3038

13 1.7333 2.3051 2.6172 3.5650 4.069 5.0088 5.8919 7.0415

14 2.0608 2.6967 3.0407 4.0747 4.6604 5.6287 6.5706 7.7895

15 2.4082 3.1075 3.4827 4.6009 5.2293 6.2621 7.2609 8.5468

16 2.7739 3.5358 3.9416 5.1422 5.8122 6.9077 7.9616 9.3122

17 3.1567 3.9802 4.4161 5.6972 6.4078 7.5642 8.6718 10.0852

18 3.5552 4.4394 4.9048 6.2648 7.0149 8.2307 9.3905 10.8649

19 3.9683 4.9123 5.4068 6.8440 7.6327 8.9065 10.1170 11.6509

20 4.3952 5.3981 5.9210 7.4338 8.2604 9.5908 10.8508 12.4426

21 4.8348 5.8957 6.4467 8.0337 8.8972 10.2829 11.5913 13.2395

22 5.2865 6.4045 6.9830 8.6427 9.5425 10.9823 12.3380 14.0415

23 5.7494 6.9237 7.5292 9.2604 10.1957 11.6886 13.0905 14.8480

24 6.2230 7.4527 8.0849 9.8862 10.8564 12.4012 13.8484 15.6587

25 6.7066 7.9910 8.6493 10.5197 11.5240 13.1197 14.6114 16.4734

26 7.1998 8.5379 9.2221 11.1602 12.1981 13.8439 15.3792 17.2919

27 7.7019 9.0932 9.8028 11.8076 12.8785 14.5734 16.1514 18.1139

28 8.2126 9.6563 10.3909 12.4613 13.5647 15.3079 16.9279 18.9392

29 8.7315 10.2268 10.9861 13.1211 14.2565 16.0471 17.7084 19.7677

30 9.2581 10.8044 11.5880 13.7867 14.9535 16.7908 18.4927 20.5992

31 9.7921 11.3887 12.1963 14.4578 15.6555 17.5387 19.2806 21.4336

32 10.3331 11.9794 12.8107 15.1340 16.3622 18.2908 20.0719 22.2706

33 10.8810 12.5763 13.4309 15.8153 17.0735 19.0467 20.8665 23.1102

34 11.4352 13.1791 14.0567 16.5013 17.7891 19.8063 21.6643 23.9523

35 11.9957 13.7875 14.6878 17.1918 18.5089 20.5694 22.4650 24.7967

36 12.5622 14.4012 15.3241 17.8867 19.2327 21.3359 23.2686 25.6433

(continued)
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Table A.8 (continued)

α

ν 0.9999 0.9995 0.999 0.995 0.99 0.975 0.95 0.90

37 13.1343 15.0202 15.9653 18.5658 19.9602 22.1056 24.0749 26.4921

38 13.7120 15.6441 16.6112 19.2889 20.6914 22.8785 24.8839 27.3430

39 14.2950 16.2729 17.2616 19.9959 21.4262 23.6543 25.6954 28.1958

40 14.8831 16.9062 17.9164 20.7065 22.1643 24.4330 26.5093 29.0505

50 21.0093 23.4610 24.6739 27.9907 29.7067 32.3574 34.7643 37.6886

60 27.4969 30.3405 31.7383 35.5345 37.4849 40.4817 43.1880 46.4589

70 34.2607 37.4674 39.0364 43.2752 45.4417 48.7576 51.7393 55.3289

80 41.2445 44.7910 46.5199 51.1719 53.5401 57.1532 60.3915 64.2778

90 48.4087 52.2758 54.1552 59.1963 61.7541 65.6466 69.1260 73.2911

100 55.7246 59.8957 61.9179 67.3276 70.0649 74.2219 77.9295 82.3581

Table A.9 Critical values for the chi-square distribution

α

ν 0.10 0.05 0.025 0.01 0.005 0.001 0.0005 0.0001

1 2.7055 3.8415 5.0239 6.6349 7.8794 10.8276 12.1157 15.1367

2 4.6052 5.9915 7.3778 9.2103 10.5966 13.8155 15.2013 18.4207

3 6.2514 7.8147 9.3484 11.3449 12.8382 16.2662 17.7300 21.1075

4 7.7794 9.4877 11.1433 13.2767 14.8603 18.4668 19.9974 23.5127

5 9.2364 11.0705 12.8325 15.0863 16.7496 20.5150 22.1053 25.7418

6 10.6446 12.5916 14.4494 16.8119 18.5476 22.4577 24.1028 27.8563

7 12.0170 14.0671 16.0128 18.4753 20.2777 24.3219 26.0178 29.8775

8 13.3616 15.5073 17.5345 20.0002 21.9550 26.1245 27.8680 31.8276

9 14.6837 16.9190 19.0228 21.6660 23.5894 27.8772 29.6658 33.7199

10 15.9872 18.3070 20.4832 23.2093 25.1882 29.5883 31.4198 35.5640

11 17.2750 19.6751 21.9200 24.7250 26.7568 31.2641 33.1366 37.3670

12 18.5493 21.0261 23.3367 26.2170 28.2995 32.9095 34.8213 39.1344

13 19.8119 22.3620 24.7356 27.6882 29.8195 34.5282 36.4778 40.8707

14 21.0641 23.6848 26.1189 29.1412 31.3193 36.1233 38.1094 42.5793

15 22.3071 24.9958 27.4884 30.5779 32.8013 37.6973 39.7188 44.2632

16 23.5418 26.2962 28.8454 31.9999 34.2672 39.2524 41.3081 45.9249

17 24.7690 27.5871 30.1910 33.4087 35.7185 40.7902 42.8792 47.5664

18 25.9894 28.8693 31.5264 34.8053 37.1565 42.3124 44.4338 49.1894

19 27.2036 30.1435 32.8523 36.1909 33.5823 43.8202 45.9731 50.7955

20 28.4120 31.4104 34.1696 37.5662 39.9968 45.3147 47.4985 52.3860

21 29.6151 32.6706 35.4789 38.9322 41.4011 46.7970 49.0108 53.9620

22 30.8133 33.9244 36.7807 40.2894 42.7957 48.2679 50.5111 55.5246

(continued)
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Table A.9 (continued)

α

ν 0.10 0.05 0.025 0.01 0.005 0.001 0.0005 0.0001

23 32.0069 35.1725 38.0756 41.6384 44.1813 49.7282 52.0002 57.0746

24 33.1962 36.4150 39.3641 42.9798 45.5585 51.1786 53.4788 58.6130

25 34.3816 37.6525 40.6465 44.3141 46.9279 52.6197 54.9475 60.1403

26 35.5632 38.8851 41.9232 45.6417 48.2899 54.0520 56.4069 61.6573

27 36.7412 40.1133 43.1945 46.9629 49.6449 55.4760 57.8576 63.1645

28 37.9159 41.3371 44.4608 48.2782 50.9934 56.8923 59.3000 64.6624

29 39.0875 42.5570 45.7223 49.5879 52.3356 58.3012 60.7346 66.1517

30 40.2560 43.7730 46.9792 50.8922 53.6720 59.7031 62.1619 67.6326

31 41.4217 44.9853 48.2319 52.1914 55.0027 61.0983 63.5820 69.1057

32 42.5847 46.1943 49.4804 53.4858 56.3281 62.4872 64.9955 70.5712

33 43.7452 47.3999 50.7251 54.7755 57.6484 63.8701 66.4025 72.0296

34 44.9032 48.6024 51.9660 56.0609 58.9639 63.2472 67.8035 73.4812

35 46.0588 49.8018 53.2033 57.3421 60.2748 66.6188 69.1986 74.9262

36 47.2122 50.9985 54.4373 58.6192 61.5812 67.9852 70.5881 76.3650

37 48.3634 52.1923 55.6680 59.8925 62.8833 69.3465 71.9722 77.7977

38 49.5126 53.3835 56.8955 61.1621 64.1814 70.7029 73.3512 79.2247

39 50.6598 54.5722 58.1201 62.4281 65.4756 72.0547 74.7253 80.6462

40 51.8051 55.7585 59.3417 63.6907 66.7660 73.4020 76.0946 82.0623

50 63.1671 67.5048 71.4202 76.1539 79.4900 86.6608 89.5605 95.9687

60 74.3970 79.0819 83.2977 88.3794 91.9517 99.6072 102.6948 109.5029

70 85.5270 90.5312 95.0232 100.4252 104.2149 112.3169 115.5776 122.7547

80 96.5782 101.8795 106.6286 112.3288 116.3211 124.8392 128.2613 135.7825

90 107.5650 113.1453 118.1359 124.1163 128.2989 137.2084 140.7823 143.6273

100 118.4980 124.3421 129.5612 135.8067 140.1695 149.4493 153.1670 161.3187
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Table A.10 Critical values for the student’s t distribution (This table contains critical values tν,α

for the student’s t distribution defined by P(T ≥ tν,α) = α)

α

ν 0.20 0.10 0.05 0.025 0.01 0.005 0.001 0.0005 0.0001

1 1.3764 3.0777 6.3138 12.7062 31.8205 63.6567 313.3088 636.6192 3183.0988

2 1.0607 1.8856 2.9200 4.3027 6.9646 9.9248 22.3271 31.5991 70.7001

3 0.9785 1.6377 2.3534 3.1824 4.5407 5.8409 10.2145 12.9240 22.2037

4 0.9410 1.5332 2.1318 2.7764 3.7469 4.6041 7.1732 8.6103 13.0337

5 0.9195 1.4759 2.0150 2.5706 3.3649 4.0321 5.8934 6.8688 9.6776

6 0.9057 1.4398 1.9432 2.4469 3.1427 3.7074 5.2076 5.9588 8.0248

7 0.8960 1.4149 1.8946 2.3646 2.9980 3.4995 4.7853 5.4079 7.0634

8 0.8889 1.3968 1.8595 2.3060 2.8965 3.3554 4.5008 5.0413 6.4420

9 0.8834 1.3830 1.8331 2.2622 2.8214 3.2493 4.2968 4.7809 6.0101

10 0.8791 1.3722 1.8125 2.2281 2.7638 3.1693 4.1437 4.5869 5.6938

11 0.8755 1.3634 1.7959 2.2010 2.7181 3.1058 4.0247 4.4370 5.4528

12 0.8726 1.3562 1.7823 2.1788 2.6810 3.0545 3.9296 4.3178 5.2633

13 0.8702 1.3502 1.7709 2.1604 2.6503 3.0123 3.8520 4.2208 5.1106

14 0.8681 1.3450 1.7613 2.1448 2.6245 2.9768 3.7874 4.1405 4.9850

15 0.8662 1.3406 1.7531 2.1314 2.6025 2.9467 3.7328 4.0728 4.8800

16 0.8647 1.3368 1.7459 2.1199 2.5835 2.9208 3.6862 4.0150 4.7909

17 0.8633 1.3334 1.7396 2.1098 2.5669 2.8982 3.6458 3.9651 4.7144

18 0.8620 1.3304 1.7341 2.1009 2.5524 2.8784 3.6105 3.9216 4.6480

19 0.8610 1.3277 1.7291 2.0930 2.5395 2.8609 3.5794 3.8834 4.5899

20 0.8600 1.3253 1.7247 2.0860 2.5280 2.8453 3.5518 3.5495 4.5385

21 0.8591 1.3232 1.7207 2.0796 2.5176 2.8314 3.5271 3.8192 4.4929

22 0.8583 1.3212 1.7171 2.0739 2.5083 2.8187 3.5050 3.7921 4.4520

23 0.8575 1.3195 1.7139 2.0687 2.4999 2.8073 2.4850 3.7676 4.4152

24 0.8569 1.3178 1.7109 2.0639 2.4922 2.7969 3.4008 3.7454 4.3819

25 0.8562 1.3163 1.7081 2.0595 2.4351 2.7874 3.4502 3.7251 4.3517

26 0.8557 1.3150 1.7056 2.0555 2.4786 2.7787 3.4350 3.7066 4.3240

27 0.8551 1.3137 1.7033 2.0518 2.4727 2.7707 3.4210 3.6896 4.2987

28 0.8546 1.3125 1.7011 2.0484 2.4671 2.7633 3.4081 3.6739 4.2754

29 0.8542 1.3114 1.6991 2.0452 2.4620 2.7564 3.3962 3.6594 4.2539

30 0.8538 1.3104 1.6973 2.0423 2.4573 2.7500 3.3852 3.6460 4.2340

40 0.8507 1.3031 1.6839 2.0211 2.4233 2.7045 3.3069 3.5510 4.0942

50 0.8489 1.2987 1.6759 2.0086 2.4033 2.6778 3.2614 3.4960 4.0140

60 0.8477 1.2958 1.6706 2.0003 2.3901 2.6603 3.2317 3.4602 3.9621

120 0.8446 1.2886 1.6577 1.9799 2.3578 2.6174 3.1595 3.3735 3.8372

∞ 0.8416 1.2816 1.6449 1.9600 2.3263 2.5758 3.0902 3.2905 3.7190
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Table A.14 Critical values dn,α for the Kolmogorov–Smirnov test

n/α 0.2 0.1 0.05 0.02 0.01 n/α 0.2 0.1 0.05 0.02 0.01

1 0.900 0.950 0.975 0.990 0.995 16 0.258 0.295 0.327 0.366 0.392

2 0.684 0.776 0.842 0.900 0.929 17 0.250 0.286 0.318 0.355 0.381

3 0.565 0.636 0.708 0.785 0.829 18 0.244 0.0279 0.309 0.346 0.371

4 0.493 0.565 0.624 0.689 0.734 19 0.237 0.271 0.301 0.337 0.361

5 0.447 0.509 0.563 0.627 0.669 20 0.232 0.265 0.294 0.329 0.352

6 0.410 0.468 0.519 0.577 0.617 21 0.226 0.259 0.287 0.321 0.344

7 0.381 0.436 0.483 0.538 0.576 22 0.221 0.253 0.281 0.314 0.337

8 0.358 0.410 0.454 0.507 0.542 23 0.216 0.247 0.275 0.307 0.330

9 0.339 0.387 0.430 0.480 0.513 24 0.212 0.242 0.264 0.301 0.323

10 0.323 0.369 0.409 0.457 0.489 25 0.208 0.238 0.264 0.295 0.317

11 0.308 0.352 0.391 0.437 0.468 26 0.204 0.233 0.259 0.290 0.311

12 0.296 0.338 0.375 0.419 0.449 27 0.200 0.229 0.254 0.284 0.305

13 0.285 0.325 0.361 0.404 0.432 28 0.197 0.225 0.250 0.279 0.300

14 0.275 0.314 0.349 0.390 0.418 29 0.193 0.221 0.246 0.275 0.295

15 0.266 0.304 0.338 0.377 0.404 30 0.190 0.218 0.242 0.270 0.281
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Table A.15 Critical values for the Wilcoxon signed-rank test P(S+ ≥ c) when H0 is true
n c1 p0(S+ ≥ c1) n c1 p0(S+ ≥ c1)

3 6 0.125 78 0.011

4 9 0.125 79 0.009

10 0.062 81 0.005

5 13 0.094 14 73 0.108

14 0.062 74 0.097

15 0.031 79 0.052

6 17 0.109 84 0.025

19 0.047 89 0.010

20 0.031 92 0.005

21 0.016 15 83 0.104

7 22 0.109 84 0.094

24 0.055 89 0.053

26 0.023 90 0.047

28 0.008 95 0.024

8 28 0.098 100 0.011

30 0.055 101 0.009

32 0.027 104 0.005

34 0.012 16 93 0.106

35 0.008 94 0.096

36 0.004 100 0.052

9 34 0.102 106 0.025

37 0.049 112 0.011

39 0.027 113 0.009

42 0.010 116 0.005

44 0.004 17 104 0.103

10 41 0.097 105 0.095

44 0.053 112 0.049

47 0.024 118 0.025

50 0.010 125 0.010

52 0.005 129 0.005

11 48 0.103 18 116 0.098

52 0.051 124 0.049

55 0.027 131 0.024

59 0.009 138 0.010

61 0.005 143 0.005

12 56 0.102 19 128 0.098

60 0.055 136 0.052

61 0.046 137 0.048

64 0.026 144 0.025

68 0.010 152 0.010

71 0.005 157 0.005

13 64 0.108 20 140 0.101

65 0.095 150 0.049

69 0.055 158 0.024

70 0.047 167 0.010

74 0.024 172 0.005
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Index

A
Acceptance number, 360
Acceptance sampling, 353

of attributes, 354
of variables, 354
plan, 355
technique, 353

Actual capability, 378
Aliases, 302
Allowance, 384

B
Basu’s theorem, 122
Bayes’ theorem, 24, 122
Block, 240, 254
Blocking, 239, 295
Borel measurable function, 35

C
Canonical analysis, 337
Center line, 366
Central limit theorem, 55
Central tendency, 79
Characteristic function, 42
Chart

bar, 70
control, 365
mean, 369
pie, 71
quality control, 353
range, 371
Shewhart control, 367
standard deviation, 372

Coefficient
mixed quadratic, 337
of determination, 283
of kurtosis, 88
of multiple determination, 330
of skewness, 88
of variation, 87
Pearson’s correlation, 194
pure quadratic, 337
regression, 238
Spearman’s correlation, 195

Confidence
interval, 131

Confounding, 297, 315
Consumer’s risk, 356
Contrasts, 305
Control chart

CUSUM, 383
EWMA, 389
for number of defectives, 381
for number of defects, 382
fraction defective, 380

Control limit
lower, 366
upper, 366

Correlation
multiple, 201
partial, 203

Covariance, 193
analysis of, 239

Cramér and Rao inequality, 114
Critical region, 148, 231
Cuboidal, 341
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428 Index

Cumulative
distribution function, 27
frequency graph, 75

Cyclic trend, 368

D
Data

categorical, 65
continuous, 66
discrete, 66
nominal, 65
numerical, 66
ordinal, 66

Defining relation, 305
Degrees of freedom, 102, 307
Design

22 factorial, 276
23 factorial, 285
23−1 factorial, 300
balanced incomplete block, 255
box Behnken, 342
central composite, 340
completely randomized, 223
factorial, 265, 295, 303
fractional factorial, 309
full factorial, 339
incomplete block, 254
Latin square, 248
orthogonal, 339
randomized block, 239, 254
resolution I, 309
resolution II, 309
resolution III, 309
resolution IV, 309
resolution V, 309
resolution VI, 309
three-factor factorial, 272
two-factor factorial, 265
two-level fractional factorial, 300

Desirability function
approach, 344
individual, 344
overall, 346
two-sided, 345

Discriminatory power, 355
Distribution

F , 105
Bernoulli, 45
beta, 47
binomial, 45
Cauchy, 37, 47
Chi-square, 36, 102

discrete uniform, 45
exponential, 47
gamma, 47
geometric, 45
hyper geometric, 45
lognormal, 47
negative binomial, 45
normal, 48
Poisson, 45
priori, 162
Student’s t , 104
uniform, 47
Weibull, 47

Distribution function, 27
Double-sampling plan, 360

E
Effects

interaction, 304
main, 304

Error, 238
random, 256
Type I, 148, 231
Type II, 148, 231

Estimation
interval, 131
maximum likelihood, 126
point, 111

Estimator, 112
consistent, 116
efficient, 116
sufficient, 117

Event, 18
independent, 21
mutually exclusive, 18
mutually independent, 22
pairwise independent, 22

Expectation, 36
Experiment

completely randomized, 248
factorial, 304
one-factor-at-a-time, 277
screening, 309
single factor, 223

F
Factor, 223
Factorization theorem, 118
Factors nuisance, 239
Fraction defective, 355
Frequency
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cumulative relative, 69
histogram, 72
polygon, 74
relative, 68

G
Generating function, 40

moment, 41
probability, 41

Generator, 301
Geometric view, 280
Goodness of fit, 162

H
Hypothesis

alternative, 148, 231
null, 148, 231
testing, 147

I
Identity column, 303
Imperfect batch, 363
Interaction effect, 265
Interactions, 307

K
Kurtosis, 88

L
Least significant difference, 235
Least square

fit, 238
method, 206

Leptokurtic, 89
Level, 228

acceptable quality, 356
of significance, 231
rejectable quality, 356

Lot tolerance proportion defective, 356

M
Mean, 79

geometric, 84
Median, 43, 80
Mesokurtic, 89
Method of steepest

ascent, 332
decent, 332

Mode, 43, 84

Model
cubic, 238
first order, 320
first order response surface, 321
fixed effect, 228
linear statistical, 228
quadratic, 238
random effect, 228
regression, 282
second order, 320

Moments, 36
method of, 124
of order n, 39

Moving average
exponentially weighted, 388
geometric, 389

Multiplication rule, 23

N
Neyman–Pearson lemma, 150

O
Ogives, 75
Operating characteristic curve, 355

P
Path of steepest ascent, 333
Percentile, 81
Platykurtic, 89
Plot

box, 74
contour, 284
dot, 72
probability, 243

Point
saddle, 335
stationary, 335

Potential capability, 378
Principal fraction, 301
Probability

addition rule of, 355
axiomatic definition of, 19
classical definition of, 19
conditional, 20
density function, 31
function, 19
mass function, 28
of acceptance, 355

Process
capability ratio, 376
variability, 375



430 Index

Producer’s risk, 356
p-value, 149

Q
Quality, 353
Quartiles, 81

R
Random

experiment, 17
variable, 26
variable of continuous type, 31
variable of discrete type, 27

Randomization, 223, 239
Range, 68

interquartile, 82
Reference value, 384
Regression

coefficients, 339
logistic, 219
multiple linear, 321
simple linear, 205

Relative efficiency, 115
Replication, 224
Residual analysis, 321, 329
Residuals, 229
Residual sum of squares, 206
Response, 223
Response surface, 284

methodology, 319
Rotatable, 341
Run

axial, 340
center, 340
down, 368
factorial, 340
order, 280

S
Sample

space, 18
mean, 100
point, 18
standard deviation, 86
variance, 85, 101

Scatter diagram, 77
Simultaneous optimization, 344
Single sampling plan, 354, 362
Skewness, 88
Specification limit

lower, 376
upper, 376

Spherical, 341

Standard deviation, 38
Standard order, 280
Statistic, 67

R2, 238
adjusted-R2, 238
ancillary, 121
complete, 120
minimal sufficient, 120
order, 110
studentized range, 235
test, 148
unbiased, 113

Statistical quality control, 353
Structureless, 242
Symmetric, 255

T
Table

contingency, 68, 166
frequency, 67
random number, 225

Test
Fisher’s, 235
for proportions, 169
Kolmogorov Smirnov, 175
lack of fit, 321
likelihood ratio, 153
median, 174
non-parametric, 162, 173
of hypothesis, 231
sign, 173
statistic, 148, 231
Tukey’s, 235

Total probability rule, 23
Treatments, 223

V
Variable

coded, 337
natural, 337

Variance, 38
analysis, 178

Variation
allowable, 366
assignable, 366
natural, 366
non-random, 366
preventable, 366
random, 365

Y
Yates’ algorithm, 289
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